Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Enhanced reliability of drift-diffusion approximation for electrons in fluid models for nonthermal plasmas

2013, Becker, M.M., Loffhagen, D.

Common fluid models used for the description of electron transport in nonthermal discharge plasmas are subject to substantial restrictions if the electron energy transport significantly influences the discharge behaviour. A drift-diffusion approach is presented which is based on a multiterm approximation of the electron velocity distribution function and overcomes some of these restrictions. It is validated using a benchmark model and applied for the analysis of argon discharge plasmas at low and atmospheric pressure. The results are compared to those of common drift-diffusion models as well as to experimental data. It is pointed out that fluid models are able to describe nonlocal phenomena caused by electron energy transport, if the energy transport is consistently described. Numerical difficulties that frequently occur when the conventional drift-diffusion model is consistently applied are avoided by the proposed method.

Loading...
Thumbnail Image
Item

Plasma Medicine Technologies

2021, Kaushik, Nagendra Kumar, Bekeschus, Sander, Tanaka, Hiromasa, Lin, Abraham, Choi, Eun Ha

This Special Issue, entitled “Plasma Medicine Technologies”, covers the latest remarkable developments in the field of plasma bioscience and medicine. Plasma medicine is an interdisciplinary field that combines the principles of plasma physics, material science, bioscience, and medicine, towards the development of therapeutic strategies. A study on plasma medicine has yielded the development of new treatment opportunities in medical and dental sciences. An important aspect of this issue is the presentation of research underlying new therapeutic methods that are useful in medicine, dentistry, sterilization, and, in the current scenario, that challenge perspectives in biomedical sciences. This issue is focused on basic research on the characterization of the bioplasma sources applicable to living cells, especially to the human body, and fundamental research on the mutual interactions between bioplasma and organic–inorganic liquids, and bio or nanomaterials.