Search Results

Now showing 1 - 2 of 2
  • Item
    Deep Geothermal Energy for Lower Saxony (North Germany) – Combined Investigations of Geothermal Reservoir Characteristics
    (Amsterdam [u.a.] : Elsevier, 2014) Hahne, Barbara; Thomas, Rüdiger; Bruckman, Viktor J.; Hangx, Suzanne; Ask, Maria
    For the economic success of a geothermal project the hydraulic properties and temperature of the geothermal reservoir are crucial. New methodologies in seismics, geoelectrics and reservoir geology are tested within the frame of the collaborative research programme “Geothermal Energy and High-Performance Drilling” (gebo). Within nine geoscientific projects, tools were developed that help in the evaluation and interpretation of acquired data. Special emphasis is placed on the investigation of rock properties, on the development of early reservoir assessment even during drilling, and on the interaction between the drilling devices and the reservoir formation. The propagation of fractures and the transport of fluid and heat within the regional stress field are investigated using different approaches (field studies, seismic monitoring, multi-parameter modelling). Geologic structural models have been created for simulation of the local stress field and hydromechanical processes. Furthermore, a comprehensive dataset of hydrogeochemical environments was collected allowing characterisation and hydrogeochemical modelling of the reservoir.
  • Item
    A new method for correcting temperature log profiles in low-enthalpy plays
    (Berlin ; Heidelberg [u.a.] : Springer Open, 2020) Schumacher, Sandra; Moeck, Inga
    Temperature logs recorded shortly after drilling operations can be the only temperature information from deep wells. However, these measurements are still influenced by the thermal disturbance caused by drilling and therefore do not represent true rock temperatures. The magnitude of the thermal disturbance is dependent on many factors such as drilling time, logging procedure or mud temperature. However, often old well reports lack this crucial information so that conventional corrections on temperature logs cannot be performed. This impedes the re-evaluation of well data for new exploration purposes, e.g. for geothermal resources. This study presents a new method to correct log temperatures in low-enthalpy play types which only requires a knowledge of the final depth of the well as an input parameter. The method was developed and verified using existing well data from an intracratonic sedimentary basin, the eastern part of the North German Basin. It can be transferred to other basins with little or no adjustment. © 2020, The Author(s).