Search Results

Now showing 1 - 4 of 4
  • Item
    Plasma rotation with circularly polarized laser pulse
    (London : Hindawi, 2015) Lécz, Z.; Andreev, A.; Seryi, A.
    The efficient transfer of angular orbital momentum from circularly polarized laser pulses into ions of solid density targets is investigated with different geometries using particle-in-cell simulations. The detailed electron and ion dynamics presented focus upon the energy and momentum conversion efficiency. It is found that the momentum transfer is more efficient for spiral targets and the maximum value is obtained when the spiral step is equal to twice the laser wavelength. This study reveals that the angular momentum distribution of ions strongly depends up on the initial target shape and density.
  • Item
    Observation of discrete, vortex light bullets
    (College Park : American Institute of Physics Inc., 2014) Eilenberger, F.; Prater, K.; Minardi, S.; Geiss, R.; Röpke, U.; Kobelke, J.; Schuster, K.; Bartelt, H.; Nolte, S.; Tünnermann, A.; Pertsch, T.
    We report the first experimental observation of vortex light bullets that are discrete, spatiotemporal, solitary waves with orbital angular momentum. We analyze conditions for their existence and investigate their rich properties and dynamics. Vortex light bullets are excited in fiber arrays with spatially shaped femtosecond pulses and analyzed with a spatiotemporal cross correlator. Most importantly, we find that they have entirely new stability properties, being robust against considerable degrees of perturbation in a limited range of energies. All experimental findings are backed up by rigorous simulations, giving further insight into the rich dynamics of vortex light bullets.
  • Item
    Excited state distribution and spin-effects in strong-field excitation of neutral Helium
    (Bristol : IOP Publ., 2015) Zimmermann, Henri; Eilzer, Sebastian; Eichmann, Ulli
    We investigated the principal quantum number n distribution of excited states resulting from the interaction of Helium with strong, short laser pulses. We find excellent agreement with predictions of the semiclassical frustrated tunneling ionization (FTI) model [1] as well as fully quantum mechanical calculations. Furthermore, the excitation process directly populates triplet excited states due to the breakdown of the Russel-Saunders coupling scheme for high orbital angular momentum l states of Helium, which are predominantly populated in the strong laser field.
  • Item
    Ultrashort vortex pulses with controlled spectral gouy rotation
    (Basel : MDPI, 2020) Liebmann, Max; Treffer, Alexander; Bock, Martin; Wallrabe, Ulrike; Grunwald, Ruediger
    Recently, the spatio-spectral propagation dynamic of ultrashort-pulsed vortex beams was demonstrated by 2D mapping of spectral moments. The rotation of characteristic anomalies, so-called "spectral eyes", was explained by wavelength-dependent Gouy phase shift. Controlling of this spectral rotation is essential for specific applications, e.g., communication and processing. Here, we report on advanced concepts for spectral rotational control and related first-proof-of-principle experiments. The speed of rotation of spectral eyes during propagation is shown to be essentially determined by angular and spectral parameters. The performance of fixed diffractive optical elements (DOE) and programmable liquid-crystal-on silicon spatial light modulators (LCoS-SLMs) that act as spiral phase gratings (SPG) or spiral phase plates (SPP) is compared. The approach is extended to radially chirped SPGs inducing axially variable angular velocity. The generation of time-dependent orbital angular momentum (self-torque) by superimposing multiple vortex pulses is proposed. © 2020 by the authors.