Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Wave-shaped polycyclic hydrocarbons with controlled aromaticity

2019, Ma, Ji, Zhang, Ke, Schellhammer, Karl Sebastian, Fu, Yubin, Komber, Hartmut, Xu, Chi, Popov, Alexey A., Hennersdorf, Felix, Weigand, Jan J., Zhou, Shengqiang, Pisula, Wojciech, Ortmann, Frank, Berger, Reinhard, Liu, Junzhi, Feng, Xinliang

Controlling the aromaticity and electronic properties of curved π-conjugated systems has been increasingly attractive for the development of novel functional materials for organic electronics. Herein, we demonstrate an efficient synthesis of two novel wave-shaped polycyclic hydrocarbons (PHs) 1 and 2 with 64 π-electrons. Among them, the wave-shaped π-conjugated carbon skeleton of 2 is unambiguously revealed by single-crystal X-ray crystallography analysis. The wave-shaped geometry is induced by steric congestion in the cove and fjord regions. Remarkably, the aromaticity of these two structural isomers can be tailored by the annulated direction of cyclopenta[b]fluorene units. Isomer 1 (Eoptg = 1.13 eV) behaves as a closed-shell compound with weakly antiaromatic feature, whereas its structural isomer 2 displays a highly stable tetraradical character (y0 = 0.23; y1 = 0.22; t1/2 = 91 days) with a narrow optical energy gap of 0.96 eV. Moreover, the curved PH 2 exhibits remarkable ambipolar charge transport in solution-processed organic thin-film transistors. Our research provides a new insight into the design and synthesis of stable functional curved aromatics with multiradical characters. © The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Switching from electron to hole transport in solution-processed organic blend field-effect transistors

2020, Fidyk, Julia, Waliszewski, Witold, Sleczkowski, Piotr, Kiersnowski, Adam, Pisula, Wojciech, Marszalek, Tomasz

Organic electronics became an attractive alternative for practical applications in complementary logic circuits due to the unique features of organic semiconductors such as solution processability and ease of large-area manufacturing. Bulk heterojunctions (BHJ), consisting of a blend of two organic semiconductors of different electronic affinities, allow fabrication of a broad range of devices such as light-emitting transistors, light-emitting diodes, photovoltaics, photodetectors, ambipolar transistors and sensors. In this work, the charge carrier transport of BHJ films in field-effect transistors is switched from electron to hole domination upon processing and post-treatment. Low molecular weight n-type N,N′-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI8-CN2) was blended with p-type poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) and deposited by spin-coating to form BHJ films. Systematic investigation of the role of rotation speed, solution temperature, and thermal annealing on thin film morphology was performed using atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. It has been determined that upon thermal annealing the BHJ morphology is modified from small interconnected PDI8-CN2 crystals uniformly distributed in the polymer fraction to large planar PDI8-CN2 crystal domains on top of the blend film, leading to the switch from electron to hole transport in field-effect transistors.