Search Results

Now showing 1 - 2 of 2
  • Item
    High-performance ion removal via zinc–air desalination
    (Amsterdam : Elsevier, 2020) Srimuk, P.; Wang, L.; Budak, Ö.; Presser, V.
    Electrochemical processes enable a new generation of energy-efficient desalination technologies. While ion electrosorption via capacitive deionization is only suitable for brackish water with low molar strength, the use of Faradaic materials capable of reversible ion intercalation or conversion reactions allows energy-efficient removal of ions from seawater. However, the limited charge transfer/storage capacity of Faradaic materials indicates an upper limit for their desalination applications. Therefore, a new electrochemical concept must be explored to exceed the current state-of-the-art results and to push the desalination capacity beyond 100–200 mgNaCl/gelectrode. In this proof-of-concept work, we introduce the new concept of using metal–air battery technology for desalination. We do so by presenting performance data for zinc–air desalination (ZAD) in 600 mM NaCl. The ZAD cell provides a desalination capacity of 0.9–1.0 mgNaCl/cm2 (normalized to the membrane area; corresponding to 1300 mgNaCl/gZn) with a charge efficiency of 70% when charging/discharging the cell at 1 mA/cm2. The energy consumption of ZAD is 68–92 kJ/mol.
  • Item
    High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water
    (London : RSC Publishing, 2016) Srimuk, Pattarachai; Ries, Lucie; Zeiger, Marco; Fleischmann, Simon; Jäckel, Nicolas; Tolosa, Aura; Krüner, Benjamin; Aslan, Mesut; Presser, Volker
    Performance stability in capacitive deionization (CDI) is particularly challenging in systems with a high amount of dissolved oxygen due to rapid oxidation of the carbon anode and peroxide formation. For example, carbon electrodes show a fast performance decay, leading to just 15% of the initial performance after 50 CDI cycles in oxygenated saline solution (5 mM NaCl). We present a novel strategy to overcome this severe limitation by employing nanocarbon particles hybridized with sol–gel-derived titania. In our proof-of-concept study, we demonstrate very stable performance in low molar saline electrolyte (5 mM NaCl) with saturated oxygen for the carbon/metal oxide hybrid (90% of the initial salt adsorption capacity after 100 cycles). The electrochemical analysis using a rotating disk electrode (RDE) confirms the oxygen reduction reaction (ORR) catalytic effect of FW200/TiO2, preventing local peroxide formation by locally modifying the oxygen reduction reaction.