Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Chance constraints in PDE constrained optimization

2016, Farshbaf-Shaker, M. Hassan, Henrion, René, Hömberg, Dietmar

Chance constraints represent a popular tool for finding decisions that enforce a robust satisfaction of random inequality systems in terms of probability. They are widely used in optimization problems subject to uncertain parameters as they arise in many engineering applications. Most structural results of chance constraints (e.g., closedness, convexity, Lipschitz continuity, differentiability etc.) have been formulated in a finite-dimensional setting. The aim of this paper is to generalize some of these well-known semi-continuity and convexity properties to a setting of control problems subject to (uniform) state chance constraints.

Loading...
Thumbnail Image
Item

Optimal Neumann boundary control of a vibrating string with uncertain initial data and probabilistic terminal constraints

2019, Farshbaf Shaker, Mohammad Hassan, Gugat, Martin, Heitsch, Holger, Henrion, René

In optimal control problems, often initial data are required that are not known exactly in practice. In order to take into account this uncertainty, we consider optimal control problems for a system with an uncertain initial state. A finite terminal time is given. On account of the uncertainty of the initial state, it is not possible to prescribe an exact terminal state. Instead, we are looking for controls that steer the system into a given neighborhood of the desired terminal state with sufficiently high probability. This neighborhood is described in terms of an inequality for the terminal energy. The probabilistic constraint in the considered optimal control problem leads to optimal controls that are robust against the inevitable uncertainties of the initial state. We show the existence of such optimal controls. Numerical examples with optimal Neumann control of the wave equation are presented.

Loading...
Thumbnail Image
Item

First-order conditions for the optimal control of learning-informed nonsmooth PDEs

2022, Dong, Guozhi, Hintermüller, Michael, Papafitsoros, Kostas, Völkner, Kathrin

In this paper we study the optimal control of a class of semilinear elliptic partial differential equations which have nonlinear constituents that are only accessible by data and are approximated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail. In particular, the existence and uniqueness of the state equation are shown, and continuity as well as directional differentiability properties of the corresponding control-to-state map are established. Based on approximation capabilities of the pertinent networks, we address fundamental questions regarding approximating properties of the learning-informed control-to-state map and the solution of the corresponding optimal control problem. Finally, several stationarity conditions are derived based on different notions of generalized differentiability.

Loading...
Thumbnail Image
Item

Optimization with learning-informed differential equation constraints and its applications

2020, Dong, Guozhi, Hintermüller, Michael, Papafitsoros, Kostas

Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems with constituents that are only accessible through data-driven techniques are studied. A particular focus is on the analysis and on numerical methods for problems with machine-learned components. For a rather general context, an error analysis is provided, and particular properties resulting from artificial neural network based approximations are addressed. Moreover, for each of the two inspiring applications analytical details are presented and numerical results are provided.