Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Constraining two climate field reconstruction methodologies over the North Atlantic realm using pseudo-proxy experiments

2021, Nilsen, Tine, Talento, Stefanie, Werner, Johannes P.

This study presents pseudo-proxy experiments to quantify the reconstruction skill of two climate field reconstruction methodologies for a marine proxy network subject to age uncertainties. The BARCAST methodology (Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time) is tested for sea surface temperature (SST) reconstruction for the first time over the northern North Atlantic region, and compared with a classic analogue reconstruction methodology. The reconstruction experiments are performed at annual and decadal resolution. We implement chronological uncertainties inherent to marine proxies as a novelty, using a simulated age-model ensemble covering the past millennium. Our experiments comprise different scenarios for the input data network, with the noise levels added to the target variable extending from ideal to realistic. Results show that both methodologies are able to reconstruct the Summer mean SST skillfully when the proxy network is considered absolutely dated, but the skill of the analogue method is superior to BARCAST. Only the analogue method provides skillful correlations with the true target variable in the case of a realistic noisy and age-uncertain proxy network. The spatiotemporal properties of the input target data are partly contrasting with the BARCAST model formulations, resulting in an inferior reconstruction ensemble that is similar to a white-noise stochastic process in time. The analogue method is also successful in reconstructing decadal temperatures, while BARCAST fails. The results contribute to constraining uncertainties in CFR for ocean dynamics which are highly important for climate across the globe.

Loading...
Thumbnail Image
Item

An astronomical age-depth model and reconstruction of moisture availability in the sediments of Lake Chalco, central Mexico, using borehole logging data

2022, Sardar Abadi, Mehrdad, Zeeden, Christian, Ulfers, Arne, Wonik, Thomas

Understanding the moisture history of low latitudes from the most recent glacial period of the latest Pleistocene to post-glacial warmth in continental tropical regions is hampered by the lack of continuous time series. We conducted downhole spectral gamma (γ) ray and magnetic susceptibility logs over 300 m of lacustrine deposits of Lake Chalco (Mexico City) to reconstruct an age-depth model using an astronomical and correlative approach, and to reconstruct long-term moisture availability. Our results suggest that the Lake Chalco sediments contain several rhythmic alternations with a quasi-cyclic pattern comparable to the Pleistocene benthic stack. This allows us to calculate a time span of about 500,000 years for this sediment deposition. We developed proxies for moisture, detrital input, and salinity, all based on the physical properties of γ-ray spectroscopy and magnetic susceptibility. Our results indicate that Lake Chalco formed during Marine Isotope Stage 13 (MIS13) and the lake level gradually increased over time until the interglacial MIS9. Moisture content is generally higher during interglacials than during glacials. However, two periods, namely MIS6 and MIS4, have higher moisture contents. We developed a model by comparing the obtained moisture proxy with climatic drivers, to understand how different climate systems drove effective moisture availability in the Chalco sub-basin over the past 500,000 years. Carbon dioxide, eccentricity, and precession are all key drivers of the moisture content of Lake Chalco over the past 500,000 years.

Loading...
Thumbnail Image
Item

Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

2020, Turney, Chris S.M., Fogwill, Christopher J., Golledge, Nicholas R., McKay, Nicholas P., van Sebille, Erik, Jones, Richard T., Etheridge, David, Rubino, Mauro, Thornton, David P., Davies, Siwan M., Ramsey, Christopher Bronk, Thomas, Zoë A., Bird, Michael I., Munksgaard, Niels C., Kohno, Mika, Woodward, John, Winter, Kate, Weyrich, Laura S., Rootes, Camilla M., Millman, Helen, Albert, Paul G., Rivera, Andres, van Ommen, Tas, Curran, Mark, Moy, Andrew, Rahmstorf, Stefan, Kawamura, Kenji, Hillenbrand, Claus-Dieter, Weber, Michael E., Manning, Christina J., Young, Jennifer, Cooper, Alan

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice-climate feedbacks that further amplify warming.

Loading...
Thumbnail Image
Item

The role of CO2 decline for the onset of Northern Hemisphere glaciation

2015, Willeit, Matteo, Ganopolski, Andrey, Calov, Reinhard, Robinson, Alexander, Maslin, Mark

The Pliocene–Pleistocene Transition (PPT), from around 3.2 to 2.5 million years ago (Ma), represented a major shift in the climate system and was characterized by a gradual cooling trend and the appearance of large continental ice sheets over northern Eurasia and North America. Paleo evidence indicates that the PPT was accompanied and possibly caused by a decrease in atmospheric CO2, but the temporal resolution of CO2 reconstructions is low for this period of time and uncertainties remain large. Therefore, instead of applying existent CO2 reconstructions we solved an ‘inverse’ problem by finding a schematic CO2 concentration scenario that allows us to simulate the temporal evolution of key climate characteristics in agreement with paleoclimate records. To this end, we performed an ensemble of transient simulations with an Earth system model of intermediate complexity from which we derived a best guess transient CO2 scenario for the interval from 3.2 to 2.4 Ma that gives the best fit between the simulated and reconstructed benthic δ18O and global sea surface temperature evolution. Our data-constrained CO2 scenarios are consistent with recent CO2 reconstructions and suggest a gradual CO2 decline from 375–425 to 275–300 ppm, between 3.2 and 2.4 Ma. In addition to a gradual decline, the best fit to paleoclimate data requires the existence of pronounced CO2 variability coherent with the 41-kyr (1 kyr = 1000 years) obliquity cycle. In our simulations the long-term CO2 decline is accompanied by a relatively abrupt intensification of Northern Hemisphere glaciation at around 2.7 Ma. This is the result of a threshold behaviour of the ice sheets response to gradual CO2 decrease and orbital forcing. The simulated Northern Hemisphere ice sheets during the early Pleistocene glacial cycles reach a maximum volume equivalent to a sea level drop of about 40 m. Both ice volume and benthic δ18O are dominated by 41-kyr cyclicity. Our simulations suggest that before 2.7 Ma Greenland was ice free during summer insolation maxima and only partly ice covered during periods of minimum summer insolation. A fully glaciated Greenland comparable to its present-day ice volume is modelled only during glacial maxima after 2.7 Ma and more continuously after 2.5 Ma.