Search Results

Now showing 1 - 2 of 2
  • Item
    Synthesis of High Crystalline TiO2 Nanoparticles on a Polymer Membrane to Degrade Pollutants from Water
    (Basel : MDPI, 2018-9-5) Fischer, Kristina; Schulz, Paulina; Atanasov, Igor; Abdul Latif, Amira; Thomas, Isabell; Kühnert, Mathias; Prager, Andrea; Griebel, Jan; Schulze, Agnes
    Titanium dioxide (TiO2) is described as an established material to remove pollutants from water. However, TiO2 is still not applied on a large scale due to issues concerning, for example, the form of use or low photocatalytic activity. We present an easily upscalable method to synthesize high active TiO2 nanoparticles on a polyethersulfone microfiltration membrane to remove pollutants in a continuous way. For this purpose, titanium(IV) isopropoxide was mixed with water and hydrochloric acid and treated up to 210 °C. After cooling, the membrane was simply dip-coated into the TiO2 nanoparticle dispersion. Standard characterization was undertaken (i.e., X-ray powder diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, water permeance, contact angle). Degradation of carbamazepine and methylene blue was executed. By increasing synthesis temperature crystallinity and photocatalytic activity elevates. Both ultrasound modification of nanoparticles and membrane pre-modification with carboxyl groups led to fine distribution of nanoparticles. The ultrasound-treated nanoparticles gave the highest photocatalytic activity in degrading carbamazepine and showed no decrease in degradation after nine times of repetition. The TiO2 nanoparticles were strongly bound to the membrane. Photocatalytic TiO2 nanoparticles with high activity were synthesized. The innovative method enables a fast and easy nanoparticle production, which could enable the use in large-scale water cleaning.
  • Item
    Photocatalytic degradation and toxicity evaluation of diclofenac by nanotubular titanium dioxide–PES membrane in a static and continuous setup
    (London : RSC Publishing, 2015) Fischer, K.; Kühnert, M.; Gläser, R.; Schulze, A.
    Diclofenac is a commonly used anti-inflammatory drug, which has been found in surface waters. Advanced oxidation processes (AOPs) seem to be the most suitable technique to prevent the entry of diclofenac and other pollutants into surface waters. TiO2 is especially reliable in mineralizing many organic molecules. The combination of TiO2 nanotubes with a polymer microfiltration membrane (polyethersulfone, PES) showed high photocatalytic activity by degrading diclofenac combined with an excellent membrane performance and long-term stability. By continuously degrading pollutants from water via a cross-flow setup, the molecules to be degraded are transported right to the membrane surface so that the overall reaction rate is increased. The toxicity of diclofenac was reduced by photocatalysis and photolysis; however, photocatalysis had greater impact. Moreover, the complete degradation of pollutants is very important to avoid highly toxic intermediate products.