Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Photoemission of Bi2Se3 with circularly polarized light: Probe of spin polarization or means for spin manipulation?

2014, Sánchez-Barriga, J., Varykhalov, A., Braun, J., Xu, S.-Y., Alidoust, N., Kornilov, O., Minár, J., Hummer, K., Springholz, G., Bauer, G., Schumann, R., Yashina, L.V., Ebert, H., Hasan, M.Z., Rader, O.

Topological insulators are characterized by Dirac-cone surface states with electron spins locked perpendicular to their linear momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy.We solve this puzzle and show that vacuum ultraviolet photons (50-70 eV) with linear or circular polarization indeed probe the initial-state spin texture of Bi2Se3 while circularly polarized 6-eV low-energy photons flip the electron spins out of plane and reverse their spin polarization, with its sign determined by the light helicity. Our photoemission calculations, taking into account the interplay between the varying probing depth, dipole-selection rules, and spin-dependent scattering effects involving initial and final states, explain these findings and reveal proper conditions for light-induced spin manipulation. Our results pave the way for future applications of topological insulators in optospintronic devices.

Loading...
Thumbnail Image
Item

Photoemission electron microscopy of magneto-ionic effects in La0.7Sr0.3MnO3

2020, Wilhelm, Marek, Giesen, Margret, Duchoň, Tomáš, Moors, Marco, Mueller, David N., Hackl, Johanna, Baeumer, Christoph, Hamed, Mai Hussein, Cao, Lei, Zhang, Hengbo, Petracic, Oleg, Glöß, Maria, Cramm, Stefan, Nemšák, Slavomír, Wiemann, Carsten, Dittmann, Regina, Schneider, Claus M., Müller, Martina

Magneto-ionic control of magnetism is a promising route toward the realization of non-volatile memory and memristive devices. Magneto-ionic oxides are particularly interesting for this purpose, exhibiting magnetic switching coupled to resistive switching, with the latter emerging as a perturbation of the oxygen vacancy concentration. Here, we report on electric-field-induced magnetic switching in a La0.7Sr0.3MnO3 (LSMO) thin film. Correlating magnetic and chemical information via photoemission electron microscopy, we show that applying a positive voltage perpendicular to the film surface of LSMO results in the change in the valence of the Mn ions accompanied by a metal-to-insulator transition and a loss of magnetic ordering. Importantly, we demonstrate that the voltage amplitude provides granular control of the phenomena, enabling fine-tuning of the surface electronic structure. Our study provides valuable insight into the switching capabilities of LSMO that can be utilized in magneto-ionic devices. © 2020 Author(s).

Loading...
Thumbnail Image
Item

Experimental electronic structure of In2O3 and Ga2O3

2011, Janowitz, C., Scherer, V., Mohamed, M., Krapf, A., Dwelk, H., Manzke, R., Galazka, Z., Uecker, R., Irmscher, K., Fornari, R., Michling, M., Schmeißer, D., Weber, J.R., Varley, J.B., Van De Walle, C.G.

Transparent conducting oxides (TCOs) pose a number of serious challenges. In addition to the pursuit of high-quality single crystals and thin films, their application has to be preceded by a thorough understanding of their peculiar electronic structure. It is of fundamental interest to understand why these materials, transparent up to the UV spectral regime, behave also as conductors. Here we investigate In2O3 and Ga2O3, two binary oxides, which show the smallest and largest optical gaps among conventional n-type TCOs. The investigations on the electronic structure were performed on high-quality n-type single crystals showing carrier densities of ∼1019 cm-3 (In2O3) and ∼1017 cm-3(Ga2O3). The subjects addressed for both materials are: the determination of the band structure along high-symmetry directions and fundamental gaps by angular resolved photoemission (ARPES). We also address the orbital character of the valence- and conduction-band regions by exploiting photoemission cross.

Loading...
Thumbnail Image
Item

Absorption and photoemission spectroscopy of rare-earth oxypnictides

2009, Kroll, T., Roth, F., Koitzsch, A., Kraus, R., Batchelor, D.R., Werner, J., Behr, G., Büchner, B., Knupfer, M.

The electronic structure of various rare-earth oxypnictides has been investigated by performing Fe L2, 3 x-ray absorption spectroscopy, and Fe 2p and valence band x-ray photoemission spectroscopy. As representative samples the non-superconducting parent compounds LnFeAsO (Ln=La, Ce, Sm and Gd) have been chosen and measured at 25 and 300 K, i.e. below and above the structural and magnetic phase transition at ~150 K. We find no significant change of the electronic structure of the FeAs layers when switching between the different rare-earth ions or when varying the temperature below and above the transition temperatures. Using a simple two-configuration model, we find qualitative agreement with the Fe 2p3/2 core-level spectrum, which allows for a qualitative explanation of the experimental spectral shapes.

Loading...
Thumbnail Image
Item

Observation of strontium segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 oxide heterostructures by X-ray photoemission spectroscopy

2014, Treske, Uwe, Heming, Nadine, Knupfer, Martin, Büchner, Bernd, Koitzsch, Andreas, Di Gennaro, Emiliano, Scotti di Uccio, Umberto, Miletto Granozio, Fabio, Krause, Stefan

LaAlO3 and NdGaO3 thin films of different thicknesses have been grown by pulsed laser deposition on TiO2-terminated SrTiO3 single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy hν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide