Search Results

Now showing 1 - 3 of 3
  • Item
    Ultrafast Structural Changes in Chiral Molecules Measured with Free-Electron Lasers
    (Bristol : IOP Publ., 2020) Schmidt, P.; Music, V.; Hartmann, G.; Boll, R.; Erk, B.; Bari, S.; Allum, F.; Baumann, T.M.; Brenner, G.; Brouard, M.; Burt, M.; Coffee, R.; Dörner, S.; Galler, A.; Grychtol, P.; Heathcote, D.; Inhester, L.; Kazemi, M.; Larsson, M.; Li, Z.; Lutmann, A.; Manschwetus, B.; Marder, L.; Mason, R.; Moeller, S.; Osipov, T.; Otto, H.; Passow, C.; Rolles, D.; Rupprecht, P.; Schubert, K.; Schwob, L.; Thomas, R.; Vallance, C.; Von Korff Schmising, C.; Wagner, R.; Walter, P.; Wolf, T.J.A.; Zhaunerchyk, V.; Meyer, M.; Ehresmann, A.; Knie, A.; Demekhin, P.V.; Ilchen, M.
    (X-ray) free-electron lasers are employed to site specifically interrogate atomic fragments during ultra-fast photolysis of chiral molecules via time-resolved photoelectron circular dichroism. © 2020 Institute of Physics Publishing. All rights reserved.
  • Item
    Evidence of the dominant production mechanism of ammonia in a hydrogen plasma with parts per million of nitrogen
    ([Melville, NY] : American Institute of Physics, 2021) Ellis, J.; Köpp, D.; Lang, N.; van Helden, J. H.
    Absolute ground state atomic hydrogen densities were measured, by the utilization of two-photon absorption laser induced fluorescence, in a low-pressure electron cyclotron resonance plasma as a function of nitrogen admixtures - 0 to 5000 ppm. At nitrogen admixtures of 1500 ppm and higher, the spectral distribution of the fluorescence changes from a single Gaussian to a double Gaussian distribution; this is due to a separate, nascent contribution arising from the photolysis of an ammonia molecule. At nitrogen admixtures of 5000 ppm, the nascent contribution becomes the dominant contribution at all investigated pressures. Thermal loading experiments were conducted by heating the chamber walls to different temperatures; this showed a decrease in the nascent contributions with increasing temperature. This is explained by considering how the temperature influences recombination coefficients, and from which, it can be stated that the Langmuir-Hinshelwood recombination mechanism is dominant over the Eley-Rideal mechanism.
  • Item
    Photocatalytic degradation and toxicity evaluation of diclofenac by nanotubular titanium dioxide–PES membrane in a static and continuous setup
    (London : RSC Publishing, 2015) Fischer, K.; Kühnert, M.; Gläser, R.; Schulze, A.
    Diclofenac is a commonly used anti-inflammatory drug, which has been found in surface waters. Advanced oxidation processes (AOPs) seem to be the most suitable technique to prevent the entry of diclofenac and other pollutants into surface waters. TiO2 is especially reliable in mineralizing many organic molecules. The combination of TiO2 nanotubes with a polymer microfiltration membrane (polyethersulfone, PES) showed high photocatalytic activity by degrading diclofenac combined with an excellent membrane performance and long-term stability. By continuously degrading pollutants from water via a cross-flow setup, the molecules to be degraded are transported right to the membrane surface so that the overall reaction rate is increased. The toxicity of diclofenac was reduced by photocatalysis and photolysis; however, photocatalysis had greater impact. Moreover, the complete degradation of pollutants is very important to avoid highly toxic intermediate products.