Search Results

Now showing 1 - 2 of 2
  • Item
    The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells
    (New York, NY [u.a.] : Springer, 2017) Mann, Daniel; Nascimento-Duplat, Daniel; Keul, Helmut; Möller, Martin; Verheijen, Marcel; Xu, Man; Urbach, H. Paul; Adam, Aurèle J. L.; Buskens, Pascal
    Au and Ag nanoshells are of interest for a wide range of applications. The plasmon resonance of such nanoshells is the property of interest and can be tuned in a broad spectral regime, ranging from the ultraviolet to the mid-infrared. To date, a large number of manuscripts have been published on the optics of such nanoshells. Few of these, however, address the effect of particle size distribution and metal shell imperfections on the plasmon resonance. Both are inherent to the chemical synthesis of metal nanoshells and therefore to a large extent unavoidable. It is of vital importance to understand their effect on the plasmon resonance, since this determines the scope and limitations of the technology and may have a direct impact on the application of such particles. Here, we elucidate the effect of particle size distribution and imperfections in the metal shell on the plasmon resonance of Au and Ag nanoshells. The size of the polystyrene core and the thickness of the Au and Ag shells are systematically varied to study their influence on the plasmon resonance, and the results are compared to values obtained through optical simulations using extended Mie theory and finite element method. Discrepancies between theory and practice are studied in detail and discussed extensively. Quantitative information on the minimum thickness of the metal shell, which is required to realize a satisfactory plasmon resonance of a metal nanoshell, is provided for Au and Ag.
  • Item
    Selective Grafting of Polyamines to Polyether Ether Ketone Surface during Molding and Its Use for Chemical Plating
    (Basel : MDPI, 2018) Nagel, Jürgen; Zimmermann, Philipp; Schwarz, Simona; Schlenstedt, Kornelia
    We present a new approach of surface functionalization of polyether ether ketone (PEEK) that is carried out during the molding step. Thin films of polymers with different functional groups were applied to the surface of a mold and brought in close contact with a PEEK melt during injection molding. The surfaces of the produced parts were characterized after solidification. Only those PEEK surfaces that were in contact with polymers bearing primary amino groups exhibited a wettability for water. Obviously, the thin polymer film was grafted to the surface by a chemical reaction initiated by the high melt temperature. The formation of azomethine bonds between PEEK and the polyamine by coupling to the ketone groups was proposed. The other amino groups in the molecule were still in function after the molding process. They adsorbed different anionic molecules and anionic charged nanoparticles from aqueous solutions. The surfaces could be chemically plated by copper and nickel with high adhesion.