Search Results

Now showing 1 - 3 of 3
  • Item
    Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures
    (Amsterdam [u.a.] : Elsevier Science, 2019) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the focus on the use as leakage detectors, the vapor sensing behavior of conductive polymer composites (CPCs) based on polycarbonate/polystyrene/multi-walled carbon nanotube (PC/PS/MWCNT) blends with different blend ratios was studied as well as their morphological and electrical properties. In the melt mixed blend composites, the MWCNTs are preferentially localized in PC. At the PC/PS ratio of 70/30 wt%, the composites showed a sea-island structure, while for blends containing 40 wt% or 50 wt% PS co-continuous structures were developed resulting in a reduction in the MWCNT percolation threshold. The saturated vapors of the selected solvents have good interactions to PS but different interactions to PC. At 0.75 wt% MWCNT, sea-island CPCs showed high relative resistance change (Rrel) but poor reversibility towards moderate vapors like ethyl acetate and toluene, while CPCs with co-continuous structure exhibited lower Rrel and better reversibility. All CPCs showed poor reversibility towards vapor of the good solvent dichloromethane due to strong interactions between polymers and vapor. In the vapor of the poor solvent cyclohexane, CPCs with higher PS content showed increased Rrel. After extraction of the PS component by cyclohexane, the sensing response was decreased and the Rrel of the co-continuous blend even reached negative values.
  • Item
    The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component
    (Basel : MDPI, 2021-3-1) Gültner, Marén; Boldt, Regine; Formanek, Petr; Fischer, Dieter; Simon, Frank; Pötschke, Petra
    Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.
  • Item
    Thermal analysis of aliphatic polyester blends with natural antioxidants
    (Basel : MDPI, 2020) Olejnik, Olga; Masek, Anna; Kiersnowski, Adam
    The aim of this research was to enhance thermal stability of aliphatic polyester blends via incorporation of selected natural antioxidants of plant origin. Thermal methods of analysis, including differential scanning calorimetry (DSC) and thermogravimetry (TGA), are significant tools for estimating the stabilization effect of polyphenols in a polymer matrix. Thermal stability was determined by analyzing thermogravimetric curves. Polymers with selected antioxidants degraded more slowly with rising temperature in comparison to reference samples without additives. This property was also confirmed by results obtained from differential scanning calorimetry (DSC), where the difference between the oxidation temperatures of pure material and polymer with natural stabilizers was observed. According to the results, the materials with selected antioxidants, including trans-chalcone, flavone and lignin have higher oxidation temperature than the pure ones, which confirms that chosen phytochemicals protect polymers from oxidation. Moreover, based on the colour change results or FT-IR spectra analysis, some of the selected antioxidants, including lignin and trans-chalcone, can be utilized as colorants or aging indicators. Taking into account the data obtained, naturally occurring antioxidants, including polyphenols, can be applied as versatile pro-ecological additives for biodegradable and bio-based aliphatic polyesters to obtain fully environmentally friendly materials dedicated for packaging industry.