Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Kinetics of Ordering and Deformation in Photosensitive Azobenzene LC Networks

2018, Toshchevikov, Vladimir, Petrova, Tatiana, Saphiannikova, Marina

Azobenzene-containing polymer networks are unique compounds that are able to change their shape in response to light, which makes them prospective materials for photocontrollable nano-templates, sensors, microrobots, artificial muscles, etc. In present work, we study the kinetics of light-induced ordering and deformation in two-component polymer networks containing optically inert liquid crystalline (LC) mesogens and azobenzene chromophores. By this, we generalize our previous theory [J. Phys. Chem. Lett. 2017, 8, 1094–1098] devoted to the kinetics of photoizomerization in one-component azo-polymers without mesogenic inclusions. The kinetic equations of photoisomerization are used, taking into account the angular selectivity of the photoisomerization with respect to the polarization direction of the light E. After multiple trans-cis-trans photoisomerization cycles, the azobenzenes are reoriented preferably perpendicular to the vector E. This changes the ordering of the mesogens due to the orientational LC interactions between the components. The light-induced reordering is accompanied by network deformation. Time evolution of ordering and deformation is found as a function of the intensity of light and structural parameters of the LC azo-networks, which define the viscosity, the strength of the LC interactions between the components, the volume fraction of the azobenzene moieties, and the angular distribution of azobenzenes in polymer chains. Established structure-property relationships are in agreement with a number of experimental data.

Loading...
Thumbnail Image
Item

Hydrogel-based actuators: Possibilities and limitations

2014, Ionov, L.

The rapid development of microtechnology in recent times has increased the necessity for the development of devices, which are able to perform mechanical work on the micro- and macroscale. Among all kinds of actuators, the ones based on stimuli-responsive hydrogels, which are three-dimensional polymer networks strongly imbibed with water, deserve particular attention. This paper aims to provide a brief overview of stimuli-responsive hydrogel actuators with respect to their sensitivity to different stimuli, different kinds of deformation, the possibilities of generating different types of movement, as well as their applications.

Loading...
Thumbnail Image
Item

Topology Counts: Force Distributions in Circular Spring Networks

2018, Heidemann, Knut M., Sageman-Furnas, Andrew O., Sharma, Abhinav, Rehfeldt, Florian, Schmidt, Christoph F., Wardetzky, Max

Filamentous polymer networks govern the mechanical properties of many biological materials. Force distributions within these networks are typically highly inhomogeneous, and, although the importance of force distributions for structural properties is well recognized, they are far from being understood quantitatively. Using a combination of probabilistic and graph-theoretical techniques, we derive force distributions in a model system consisting of ensembles of random linear spring networks on a circle. We show that characteristic quantities, such as the mean and variance of the force supported by individual springs, can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes. Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in an elastic spring network. Our results for 1D linear spring networks readily generalize to arbitrary dimensions.