Search Results

Now showing 1 - 3 of 3
  • Item
    Homopolymerization of ethylene, 1-hexene, styrene and copolymerization of styrene with 1,3-cyclohexadiene using (η5- tetramethylcyclopentadienyl)dimethylsilyl(N-Ar')amido-TiCl2/MAO (Ar'=6-(2-(diethylboryl)phenyl)pyrid-2-yl, biphen-3-yl)
    (Basel : MDPI AG, 2011) Camadanli, S.; Decker, U.; Kühnel, C.; Reinhardt, I.; Buchmeiser, M.R.
    The propensity of a half-sandwich (η55- tetramethylcyclopentadienyl) dimethylsilylamido TiIV-based catalyst bearing an auxiliary diethylboryl-protected pyridyl moiety (Ti-8), activated by methylaluminoxane (MAO) to homopolymerize α-olefins such as ethylene, 1-hexene and styrene as well as to copolymerize styrene with 1,3-cyclohexadiene is described. The reactivity of Ti-8 was investigated in comparison to a 6-(2-(diethylboryl)phenyl)pyrid-2-yl-free analogue (Ti-3).
  • Item
    Synthesis and characterization of new photoswitchable azobenzene-containing poly(ε-caprolactones)
    (London : RSC Publishing, 2016) Appiah, Clement; Siefermann, Katrin R.; Jorewitz, Marcel; Barqawi, Haitham; Binder, Wolfgang H.
    A novel and efficient strategy in obtaining series of mono- and bi-armed azobenzene-containing poly(ε-caprolactone)s is described, starting from a commercially available azobenzene dye via azide/alkyne-“click”-reactions. The attachment of alkyne-telechelic poly(ε-caprolactone)s (1 kDa and 3 kDa), followed by chromatographic separation, allowed the attachment of either one or two PCl-chains to either side of the azobenzene-dye. The resulting mono- and bi-armed photo-switchable polymers are fully characterized by 2D-NMR techniques and show a high thermal stability. Additionally liquid chromatography at critical conditions (LCCC) coupled to ESI-TOF allowed us to prove the presence of either one or two polymer chains affixed onto the central azobenzene dye.
  • Item
    Programing stimuli-responsiveness of gelatin with electron beams: Basic effects and development of a hydration-controlled biocompatible demonstrator
    (London : Nature Publishing Group, 2017) Riedel, Stefanie; Heyart, Benedikt; Apel, Katharina S.; Mayr, Stefan G.
    Biomimetic materials with programmable stimuli responsiveness constitute a highly attractive material class for building bioactuators, sensors and active control elements in future biomedical applications. With this background, we demonstrate how energetic electron beams can be utilized to construct tailored stimuli responsive actuators for biomedical applications. Composed of collagen-derived gelatin, they reveal a mechanical response to hydration and changes in pH-value and ion concentration, while maintaining their excellent biocompatibility and biodegradability. While this is explicitly demonstrated by systematic characterizing an electron-beam synthesized gelatin-based actuator of cantilever geometry, the underlying materials processes are also discussed, based on the fundamental physical and chemical principles. When applied within classical electron beam lithography systems, these findings pave the way for a novel class of highly versatile integrated bioactuators from micro-to macroscales.