Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

2014, Levermann, A., Winkelmann, R., Nowicki, S., Fastook, J.L., Frieler, K., Greve, R., Hellmer, H.H., Martin, M.A., Meinshausen, M., Mengel, M., Payne, A.J., Pollard, D., Sato, T., Timmermann, R., Wang, W.L., Bindschadler, R.A.

The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.

Loading...
Thumbnail Image
Item

Potentials and limits to basin stability estimation

2017, Schultz, P., Menck, P.J., Heitzig, J., Kurths, J.

Stability assessment methods for dynamical systems have recently been complemented by basin stability and derived measures, i.e. probabilistic statements whether systems remain in a basin of attraction given a distribution of perturbations. Their application requires numerical estimation via Monte Carlo sampling and integration of differential equations. Here, we analyse the applicability of basin stability to systems with basin geometries that are challenging for this numerical method, having fractal basin boundaries and riddled or intermingled basins of attraction. We find that numerical basin stability estimation is still meaningful for fractal boundaries but reaches its limits for riddled basins with holes.

Loading...
Thumbnail Image
Item

Nonequilibrium phase transitions in finite arrays of globally coupled Stratonovich models: Strong coupling limit

2009, Senf, F., Altrock, P.M., Behn, U.

A finite array of N globally coupled Stratonovich models exhibits a continuous nonequilibrium phase transition. In the limit of strong coupling, there is a clear separation of timescales of centre of mass and relative coordinates. The latter relax very fast to zero and the array behaves as a single entity described by the centre of mass coordinate. We compute analytically the stationary probability distribution and the moments of the centre of mass coordinate. The scaling behaviour of the moments near the critical value of the control parameter ac(N) is determined. We identify a crossover from linear to square root scaling with increasing distance from ac. The crossover point approaches ac in the limit N →∞ which reproduces previous results for infinite arrays. Our results are obtained in both the Fokker-Planck and the Langevin approach and are corroborated by numerical simulations. For a general class of models we show that the transition manifold in the parameter space depends on N and is determined by the scaling behaviour near a fixed point of the stochastic flow. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

The power index at infinity: Weighted voting in sequential infinite anonymous games

2021, Eid, Shereif, Rocha, Ana Paula, Steels, Luc, Herik, Jaap van den

After we describe the waiting queue problem, we identify a partially observable 2n+1-player voting game with only one pivotal player; the player at the n-1 order. Given the simplest rule of heterogeneity presented in this paper, we show that for any infinite sequential voting game of size 2n+1, a power index of size n is a good approximation of the power index at infinity, and it is difficult to achieve. Moreover, we show that the collective utility value of a coalition for a partially observable anonymous game given an equal distribution of weights is n²+n. This formula is developed for infinite sequential anonymous games using a stochastic process that yields a utility function in terms of the probability of the sequence and voting outcome of the coalition. Evidence from Wikidata editing sequences is presented and the results are compared for 10 coalitions.