Search Results

Now showing 1 - 9 of 9
  • Item
    CW laser operation around 2-μm in (Tm,Yb):KLu(WO4) 2
    (Amsterdam : Elsevier, 2010) Segura, M.; Mateos, X.; Pujol, M.C.; Carvajal, J.J.; Petrov, V.; Aguiló, M.; Díaz, F.
    Laser generation in continuous wave (CW) regime at 1.94-μm from (Tm,Yb) codoped system has been investigated in two different hosts: KLu(WO 4)2 and KY(WO4)2. The high quality crystals were grown by the Top-Seeded Solution Growth Slow Cooling (TSSG-SC) method with doping levels of 2.5 at. %Tm and 5 at. %Yb. The active media were pumped with a diode laser at 980 nm. We demonstrated the superior performance of KLu(WO4)2 compared to that of KY(WO4) 2 and improved the results already obtained in the literature. The maximum laser output power reached was 157 mW for (Tm,Yb):KLu(WO 4)2 and 123 mW for (Tm,Yb):KY(WO4)2. © 2010 Published by Elsevier Ltd.
  • Item
    Optimization of the energy deposition in glasses with temporally-shaped femtosecond laser pulses
    (Amsterdam [u.a.] : Elsevier, 2011) Mauclair, C.; Mishchik, K.; Mermillod-Blondin, A.; Rosenfeld, A.; Hertel, I.V.; Audouard, E.; Stoian, R.
    Bulk machining of glasses with femtosecond laser pulses enables the fabrication of embedded optical functions. Due to the nonlinear character of the laser-matter interaction, structural modifications can occur within the focal region. To reach a full control of the process, ways of controlling the deposition of the laser energy inside the material have to be unveiled. From static and time-resolved pictures of bulk-excitation of a-SiO2 and borosilicate glass, we show that particular laser temporal shapes such as picosecond sequences can better confine the energy deposition than the femtosecond sequence by reducing the propagation artifacts.
  • Item
    Raman-Kerr Comb Generation Based on Parametric Wave Mixing in Strongly Driven Raman Molecular Gas Medium
    (2020) Benoît, Aurélien; Husakou, Anton; Beaudou, Benoît; Debord, Benoît; Gérôme, Frédéric; Benabid, Fetah
    We report on experimental and theoretical demonstrations of an optical comb spectrum based on a combination of cascaded stimulated Raman scattering and four-wave mixing mediated by Raman-induced nonresonant Kerr-type nonlinearity. This combination enabled us to transform a conventional quasiperiodic Raman comb into a comb with a single and smaller frequency spacing. This phenomenon is achieved using a hollow-core photonic crystal fiber filled with 40 bars of deuterium and pumped with a high-power picosecond laser. The resultant comb shows more than 100 spectral lines spanning over 220 THz from 800 nm to 1710 nm, with a total output power of 7.1 W. In contrast to a pure Raman comb, a 120 THz wide portion of the spectrum exhibits denser and equally spaced spectral lines with a frequency spacing of around 1.75 THz, which is much smaller than the lowest frequency of the three excited deuterium Raman resonances. A numerical solution of the generalized nonlinear Schrödinger equation in the slowly varying envelope approximation provides very good agreement with the experimental data. The additional sidebands are explained by cascaded four-wave mixing between preexisting spectral lines, mediated by the large Raman-induced optical nonlinearity. The use of such a technique for coherent comb generation is discussed. The results show a route to the generation of optical frequency combs that combine large bandwidth and high power controllable frequency spacing.
  • Item
    The new ultra high-speed all-optical coherent streak-camera
    (Bristol : IOP Publ., 2015) Arkhipov, R.M.; Arkhipov, M.V.; Egorov, V.S.; Chekhonin, I.A.; Chekhonin, M.A.; Bagayev, S.N.
    In the present paper a new type of ultra high-speed all-optical coherent streak-camera was developed. It was shown that a thin resonant film (quantum dots or molecules) could radiate the angular sequence of delayed ultra-short pulses if a transverse spatial periodic distribution of the laser pump field amplitude has a triangle shape.
  • Item
    Cross-polarized common-path temporal interferometry for high-sensitivity strong-field ionization measurements
    (Washington, DC : Soc., 2022) Nie, Zan; Nambu, Noa; Marsh, Kenneth A.; Welch, Eric; Matteo, Daniel; Zhang, Chaojie; Wu, Yipeng; Patchkovskii, Serguei; Morales, Felipe; Smirnova, Olga; Joshi, Chan
    Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.6 × 1013 cm-2 if using an 800 nm probe laser. By using this interferometer, we have investigated strong-field ionization yield versus intensity for various noble gases (Ar, Kr, and Xe) using 800 nm, 55 fs laser pulses with both linear (LP) and circular (CP) polarization. The experimental results were compared to the theoretical models of Ammosov-Delone-Krainov (ADK) and Perelomov-Popov-Terent'ev (PPT). We find that the measured phase change induced by plasma formation can be explained by the ADK theory in the adiabatic tunneling ionization regime, while PPT model can be applied to all different regimes. We have also measured the photoionization and fractional photodissociation of molecular (MO) hydrogen. By comparing our experimental results with PPT and MO-PPT models, we have determined the likely ionization pathways when using three different pump laser wavelengths of 800 nm, 400 nm, and 267 nm.
  • Item
    SESAM mode-locked Tm:Y2O3 ceramic laser
    (Washington, DC : Soc., 2022) Zhang, Ning; Liu, Shande; Wang, Zhanxin; Liu, Jian; Xu, Xiaodong; Xu, Jun; Wang, Jun; Liu, Peng; Ma, Jie; Shen, Deyuan; Tang, Dingyuan; Lin, Hui; Zhang, Jian; Chen, Weidong; Zhao, Yongguang; Griebner, Uwe; Petrov, Valentin
    We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at ∼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.
  • Item
    Tm3+-doped calcium lithium tantalum gallium garnet (Tm:CLTGG): novel laser crystal
    (Washington, DC : OSA, 2021) Alles, Adrian; Pan, Zhongben; Loiko, Pavel; Serres, Josep Maria; Slimi, Sami; Yingming, Shawuti; Tang, Kaiyang; Wang, Yicheng; Zhao, Yongguang; Dunina, Elena; Kornienko, Alexey; Camy, Patrice; Chen, Weidong; Wang, Li; Griebner, Uwe; Petrov, Valentin; Solé, Rosa Maria; Aguiló, Magdalena; Díaz, Francesc; Mateos, Xavier
    We report on the development of a novel laser crystal with broadband emission properties at ∼2 µm – a Tm3+,Li+-codoped calcium tantalum gallium garnet (Tm:CLTGG). The crystal is grown by the Czochralski method. Its structure (cubic, sp. gr. 𝐼𝑎3¯𝑑, a = 12.5158(0) Å) is refined by the Rietveld method. Tm:CLTGG exhibits a relatively high thermal conductivity of 4.33 Wm-1K-1. Raman spectroscopy confirms a weak concentration of vacancies due to the charge compensation provided by Li+ codoping. The transition probabilities of Tm3+ ions are determined using the modified Judd-Ofelt theory yielding the intensity parameters Ω2 = 5.185, Ω4 = 0.650, Ω6 = 1.068 [10−20 cm2] and α = 0.171 [10−4 cm]. The crystal-field splitting of the Tm3+ multiplets is revealed at 10 K. The first diode-pumped Tm:CLTGG laser generates 1.08 W at ∼2 µm with a slope efficiency of 23.8%. The Tm3+ ions in CLTGG exhibit significant inhomogeneous spectral broadening due to the structure disorder (a random distribution of Ta5+ and Ga3+ cations over octahedral and tetrahedral lattice sites) leading to smooth and broad gain profiles (bandwidth: 130 nm) extending well above 2 µm and rendering Tm:CLTGG suitable for femtosecond pulse generation.
  • Item
    Diode-pumped sub-50-fs Kerr-lens mode-locked Yb:GdYCOB laser
    (Washington, DC : Soc., 2021) Zeng, Huangjun; Lin, Haifeng; Lin, Zhanglang; Zhang, Lizhen; Lin, Zhoubin; Zhang, Ge; Petrov, Valentin; Loiko, Pavel; Mateos, Xavier; Wang, Li; Chen, Weidong
    We present a sub-50-fs diode-pumped Kerr-lens mode-locked laser employing a novel “mixed” monoclinic Yb:Ca4(Gd,Y)O(BO3)3 (Yb:GdYCOB) crystal as a gain medium. Nearly Fourier-limited pulses as short as 43 fs at 1036.7 nm are generated with an average power of 84 mW corresponding to a pulse repetition rate of ∼70.8 MHz. A higher average power of 300 mW was achieved at the expense of the pulse duration (113 fs) corresponding to an optical-to-optical efficiency of 35.8% representing a record-high value for any Yb-doped borate crystal. Non-phase-matched self-frequency doubling is observed in the mode-locked regime with pronounced strong spectral fringes which originate from two delayed green replicas of the fundamental femtosecond pulses in the time domain.
  • Item
    Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity
    (Melville, NY : AIP Publishing LLC, 2021) Chardonnet, Valentin; Hennes, Marcel; Jarrier, Romain; Delaunay, Renaud; Jaouen, Nicolas; Kuhlmann, Marion; Ekanayake, Nagitha; Léveillé, Cyril; von Korff Schmising, Clemens; Schick, Daniel; Yao, Kelvin; Liu, Xuan; Chiuzbăian, Gheorghe S.; Lüning, Jan; Vodungbo, Boris; Jal, Emmanuelle
    During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump–probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm (≃310 eV), we were able to probe close to the Fe L3 edge (706.8 eV) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.