Search Results

Now showing 1 - 4 of 4
  • Item
    Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect
    (Milton Park : Taylor & Francis, 2009) Gvozdikov, V.M.; Taut, M.
    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σxx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.
  • Item
    Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2Te3 Derivative with a Periodic Mn Sublattice
    (College Park, MD : American Physical Society, 2019) Vidal, R.C.; Zeugner, A.; Facio, J.I.; Ray, R.; Haghighi, M.H.; Wolter, A.U.B.; Corredor, Bohorquez, L.T.; Caglieris, F.; Moser, S.; Figgemeier, T.; Peixoto, T.R.F.; Vasili, H.B.; Valvidares, M.; Jung, S.; Cacho, C.; Alfonsov, A.; Mehlawat, K.; Kataev, V.; Hess, C.; Richter, M.; Büchner, B.; Van Den Brink, J.; Ruck, M.; Reinert, F.; Bentmann, H.; Isaeva, A.
    Combinations of nontrivial band topology and long-range magnetic order hold promise for realizations of novel spintronic phenomena, such as the quantum anomalous Hall effect and the topological magnetoelectric effect. Following theoretical advances, material candidates are emerging. Yet, so far a compound that combines a band-inverted electronic structure with an intrinsic net magnetization remains unrealized. MnBi2Te4 has been established as the first antiferromagnetic topological insulator and constitutes the progenitor of a modular (Bi2Te3)n(MnBi2Te4) series. Here, for n=1, we confirm a nonstoichiometric composition proximate to MnBi4Te7. We establish an antiferromagnetic state below 13 K followed by a state with a net magnetization and ferromagnetic-like hysteresis below 5 K. Angle-resolved photoemission experiments and density-functional calculations reveal a topologically nontrivial surface state on the MnBi4Te7(0001) surface, analogous to the nonmagnetic parent compound Bi2Te3. Our results establish MnBi4Te7 as the first band-inverted compound with intrinsic net magnetization providing a versatile platform for the realization of magnetic topological states of matter.
  • Item
    Phononic-magnetic dichotomy of the thermal Hall effect in the Kitaev material Na2 Co2 TeO6
    (College Park, MD : APS, 2023) Gillig, Matthias; Hong, Xiaochen; Wellm, Christoph; Kataev, Vladislav; Yao, Weiliang; Li, Yuan; Büchner, Bernd; Hess, Christian
    The quest for a half-quantized thermal Hall effect of a Kitaev system represents an important tool to probe topological edge currents of emergent Majorana fermions. Pertinent experimental findings for α-RuCl3 are, however, strongly debated, and it has been argued that the thermal Hall signal stems from phonons or magnons rather than from Majorana fermions. Here, we investigate the thermal Hall effect of the Kitaev candidate material Na2Co2TeO6, and we show that the measured signal emerges from at least two components, phonons and magnetic excitations. This dichotomy results from our discovery that the longitudinal and transversal heat conductivities share clear phononic signatures, while the transversal signal changes sign upon entering the low-temperature, magnetically ordered phase. Our results demonstrate that uncovering a genuinely quantized magnetic thermal Hall effect in Kitaev topological quantum spin liquids such as α-RuCl3 and Na2Co2TeO6 requires disentangling phonon vs magnetic contributions, including potentially fractionalized excitations such as the expected Majorana fermions.
  • Item
    Transition to the quantum hall regime in InAs nanowire cross-junctions
    (Bristol : IOP Publ., 2019) Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Bologna, Nicolas; Rossell, Marta D.; Wirths, Stephan; Moselund, Kirsten; Nielsch, Kornelius; Riel, Heike
    We present a low-temperature electrical transport study on four-terminal ballistic InAs nanowire cross-junctions in magnetic fields aligned perpendicular to the cross-plane. Two-terminal longitudinal conductance measurements between opposing contact terminals reveal typical 1D conductance quantization at zero magnetic field. As the magnetic field is applied, the 1D bands evolve into hybrid magneto-electric sub-levels that eventually transform into Landau levels for the widest nanowire devices investigated (width = 100 nm). Hall measurements in a four-terminal configuration on these devices show plateaus in the transverse Hall resistance at high magnetic fields that scale with (ve 2 /h) -1 . e is the elementary charge, h denotes Planck's constant and v is an integer that coincides with the Landau level index determined from the longitudinal conductance measurements. While the 1D conductance quantization in zero magnetic field is fragile against disorder at the NW surface, the plateaus in the Hall resistance at high fields remain robust as expected for a topologically protected Quantum Hall phase. © 2019 IOP Publishing Ltd.