Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Development and characterization of a metastable Al-Mn-Ce alloy produced by laser powder bed fusion

2021, Gabrysiak, Katharina, Gustmann, Tobias, Freudenberger, Jens, Neufeld, Kai, Giebeler, Lars, Leyens, Christoph, Kühn, Uta

Laser powder bed fusion (LPBF) can help to overcome two challenges occurring by casting of metastable Al alloys: (1) the high amount of casting defects and (2) the limited part size while maintaining rapid solidification of the whole cross-section. In this study, an Al92Mn6Ce2 alloy was processed crack-free without baseplate heating by LPBF. The high cooling rate during fabrication has a significant impact on the microstructure, which was characterized by SEM, TEM and XRD. The processing through LPBF causes a high amount and a strong refinement of the intermetallic Al20Mn2Ce precipitates. This leads, compared to suction-cast specimens, to a higher hardness (180 HV 5) and a higher tolerable compressive stress (>1200 MPa) associated with a pronounced plasticity without failure up to a strain of 40%. The extraordinary mechanical properties of additively manufactured Al92Mn6Ce2 can extend the possibilities of producing novel LPBF lightweight structures for potential applications under harsh conditions.

Loading...
Thumbnail Image
Item

Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

2014, Lee, M.H., Kim, B.S., Kim, D.H., Ott, R.T., Sansoz, F., Eckert, J.

We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in -brass phase reinforced Ni59Zr20 Ti16 Si2 Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

Loading...
Thumbnail Image
Item

Microstructural Characterization of a Laser Surface Remelted Cu-Based Shape Memory Alloy

2018-4-12, da Silva, Murillo Romero, Gargarella, Piter, Wolf, Witor, Gustmann, Tobias, Kiminami, Claudio Shyinti, Pauly, Simon, Eckert, Jürgen, Bolfarini, Claudemiro

Cu-based shape memory alloys (SMAs) present some advantages as higher transformation temperatures, lower costs and are easier to process than traditional Ti-based SMAs but they also show some disadvantages as low ductility and higher tendency for intergranular cracking. Several studies have sought for a way to improve the mechanical properties of these alloys and microstructural refinement has been frequently used. It can be obtained by laser remelting treatments. The aim of the present work was to investigate the influence of the laser surface remelting on the microstructure of a Cu-11.85Al-3.2Ni-3Mn (wt%) SMA. Plates were remelted using three different laser scanning speeds, i.e. 100, 300 and 500 mm/s. The remelted regions showed a T-shape morphology with a mean thickness of 52, 29 and 23 µm and an average grain size of 30, 29 and 23µm for plates remelted using scanning speed of 100, 300 and 500 mm/s, respectively. In the plates remelted with 100 and 300 mm/s some pores were found at the root of the keyhole due to the keyhole instability. We find that the instability of keyholes becomes more pronounced for lower scanning speeds. It was not observed any preferential orientation introduced by the laser treatment.

Loading...
Thumbnail Image
Item

Effect of Alloying Elements in Melt Spun Mg-alloys for Hydrogen Storage

2016, Rozenberg, Silvia, Saporiti, Fabiana, Lang, Julien, Audebert, Fernando, Botta, Pablo, Stoica, Mihai, Huot, Jacques, Eckert, Jürgen

In this paper we report the effect of alloying elements on hydrogen storage properties of melt-spun Mg-based alloys. The base alloys Mg90Si10, Mg90Cu10, Mg65Cu35 (at%) were studied. We also investigated the effect of rare earths (using MM: mischmetal) and Al in Mg65Cu25Al10, Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys. All the melt-spun alloys without MM show a crystalline structure, and the Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys showed an amorphous and partially amorphous structure respectively. At 350˚C all the alloys had a crystalline structure during the hydrogen absorption-desorption tests. It was observed that Si and Cu in the binaries alloys hindered completely the activation of the hydrogen absorption. The partial substitution of Cu by MM or Al allowed activation. The combined substitution of Cu by MM and Al showed the best results with the fastest absorption and desorption kinetics, which suggests that this combination can be used for new Mg-alloys to improve hydrogen storage properties.