Search Results

Now showing 1 - 5 of 5
  • Item
    Pd/Cu-Catalyzed amide-enabled selectivity-reversed borocarbonylation of unactivated alkenes
    (Cambridge : RSC, 2021) Wu, Fu-Peng; Wu, Xiao-Feng
    The addition reaction between CuBpin and alkenes to give a terminal boron substituted intermediate is usually fast and facile. In this communication, a selectivity-reversed procedure has been designed and established. This selectivity-reversed borocarbonylation reaction is enabled by a cooperative action between palladium and copper catalysts and proceeds with complete regioselectivity. The key to the success of this transformation is the coordination of the amide group and slower CuBpin formation by using KHCO3as the base. A wide range of β-boryl ketones were produced from terminal unactivated aliphatic alkenes and aryl iodides. Further synthetic transformations of the obtained β-boryl ketones have been developed as well. © The Royal Society of Chemistry 2021.
  • Item
    Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines
    (Cambridge : RSC, 2016) Cabrero-Antonino, Jose R.; Alberico, Elisabetta; Junge, Kathrin; Junge, Henrik; Beller, Matthias
    A broad range of secondary and tertiary amides has been hydrogenated to the corresponding amines under mild conditions using an in situ catalyst generated by combining [Ru(acac)3], 1,1,1-tris(diphenylphosphinomethyl)ethane (Triphos) and Yb(OTf)3. The presence of the metal triflate allows to mitigate reaction conditions compared to previous reports thus improving yields and selectivities in the desired amines. The excellent isolated yields of two scale-up experiments corroborate the feasibility of the reaction protocol. Control experiments indicate that, after the initial reduction of the amide carbonyl group, the reaction proceeds through the reductive amination of the alcohol with the amine arising from collapse of the intermediate hemiaminal.
  • Item
    A selective route to aryl-triphosphiranes and their titanocene-induced fragmentation
    (Cambridge : RSC, 2019) Schumann, André; Reiß, Fabian; Jiao, Haijun; Rabeah, Jabor; Siewert, Jan-Erik; Krummenacher, Ivo; Braunschweig, Holger; Hering-Junghans, Christian
    Triphosphiranes are three-membered phosphorus cycles and their fundamental reactivity has been studied in recent decades. We recently developed a high-yielding, selective synthesis for various aryl-substituted triphosphiranes. Variation of the reaction conditions in combination with theoretical studies helped to rationalize the formation of these homoleptic phosphorus ring systems and highly reactive intermediates could be isolated. In addition we showed that a titanocene synthon [Cp2Ti(btmsa)] facilitates the selective conversion of these triphosphiranes into titanocene diphosphene complexes. This unexpected reactivity mode was further studied theoretically and experimental evidence is presented for the proposed reaction mechanism. This journal is © The Royal Society of Chemistry.
  • Item
    Multi-nuclear, high-pressure, operando FlowNMR spectroscopic study of Rh/PPh3 – catalysed hydroformylation of 1-hexene
    (Cambridge [u.a.] : Soc., 2021) Bara-Estaún, Alejandro; Lyall, Catherine L.; Lowe, John P.; Pringle, Paul G.; Kamer, Paul C. J.; Franke, Robert; Hintermair, Ulrich
    The hydroformylation of 1-hexene with 12 bar of 1 : 1 H2/CO in the presence of the catalytic system [Rh(acac)(CO)2]/PPh3 was successfully studied by real-time multinuclear high-resolution FlowNMR spectroscopy at 50 °C. Quantitative reaction progress curves that yield rates as well as chemo- and regioselectivities have been obtained with varying P/Rh loadings. Dissolved H2 can be monitored in solution to ensure true operando conditions without gas limitation. 31P{1H} and selective excitation 1H pulse sequences have been periodically interleaved with 1H FlowNMR measurements to detect Rh–phosphine intermediates during the catalysis. Stopped-flow experiments in combination with diffusion measurements and 2D heteronuclear correlation experiments showed the known tris-phosphine complex [RhH(CO)(PPh3)3] to generate rapidly exchanging isomers of the bis-phosphine complex [Rh(CO)2(PPh3)2] under CO pressure that directly enter the catalytic cycle. A new mono-phosphine acyl complex has been identified as an in-cycle reaction intermediate.
  • Item
    Theoretical mechanistic investigation of zinc(ii) catalyzed oxidation of alcohols to aldehydes and esters
    (London : RSC Publishing, 2016) Nisa, Riffat Un; Mahmood, Tariq; Ludwig, Ralf; Ayub, Khurshid
    The mechanism of the Zn(II) catalyzed oxidation of benzylic alcohol to benzaldehyde and ester by H2O2 oxidant was investigated through density functional theory methods and compared with the similar oxidation mechanisms of other late transition metals. Both inner sphere and intermediate sphere mechanisms have been analyzed in the presence and absence of pyridine-2-carboxylic acid (ligand). An intermediate sphere mechanism involving the transfer of hydrogen from alcohol to H2O2 was found to be preferred over the competitive inner sphere mechanism involving β-hydride elimination. Kinetic barriers associated with the intermediate sphere mechanism are consistent with the experimental observations, suggesting that the intermediate sphere mechanism is a plausible mechanism under these reaction conditions. The oxidation of alcohols to aldehydes (first step) is kinetically more demanding than the oxidation of hemiacetals to esters (second step). Changing the oxidant to tert-butyl hydrogen peroxide (TBHP) increases the activation barrier for the oxidation of alcohol to aldehyde by 0.4 kcal mol−1, but decreases the activation barrier by 3.24 kcal mol−1 for oxidation of hemiacetal to ester. Replacement of zinc bromide with zinc iodide causes the second step to be more demanding than the first step. Pyridine-2-carboxylic acid ligand remarkably decreases the activation barriers for the intermediate sphere pathway, whereas a less pronounced inverse effect is estimated for the inner sphere mechanism.