Search Results

Now showing 1 - 10 of 12
  • Item
    Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide
    (New York, NY : American Inst. of Physics, 2014) Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.
    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913-at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length. © 2014 Author(s).
  • Item
    Transparent model concrete with tunable rheology for investigating flow and particle-migration during transport in pipes
    (Amsterdam [u.a.] : Elsevier Science, 2020) Auernhammer, Günter K.; Fataei, Shirin; Haustein, Martin A.; Patel, Himanshu P.; Schwarze, Rüdiger; Secrieru, Egor; Mechtcherine, Viktor
    The article describes the adaption and properties of a model concrete for detailed flow studies. To adapt the yield stress and plastic viscosity of the model concrete to the corresponding rheological properties of real concrete, the model concrete is made of a mixture of glass beads and a non-Newtonian fluid. The refractive index of the non-Newtonian fluid is adjusted to the refractive index of the glass beads by the addition of a further constituent. The rheological properties of the model concrete are characterised by measurements in concrete rheometers. Finally, the first exemplary results from experiments with the model concrete are presented, which give incipient impressions of the complex internal dynamics in flowing concrete.
  • Item
    Diffusion and interface effects during preparation of all-solid microstructured fibers
    (Basel : MDPI AG, 2014) Kobelke, J.; Bierlich, J.; Wondraczek, K.; Aichele, C.; Pan, Z.; Unger, S.; Schuster, K.; Bartelt, H.
    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters(e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-μm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.
  • Item
    Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: Evidences for light localization effect
    (New York, NY [u.a.] : Springer, 2012) Osminkina, L.A.; Gonchar, K.A.; Marshov, V.S.; Bunkov, K.V.; Petrov, D.V.; Golovan, L.A.; Talkenberg, F.; Sivakov, V.A.; Timoshenko, V.Y.
    We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1-25 μm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.3 ÷ 1 μm results in a decrease of the total reflectance of 1%-5%, which cannot be described in the effective medium approximation. The Raman scattering intensity under excitation at approximately 1 μm increases strongly in the sample with SiNWs in comparison with that in c-Si substrate. This effect is related to an increase of the light-matter interaction time due to the strong scattering of the excitation light in SiNW array. The prepared SiNWs are discussed as a kind of 'black silicon', which can be formed in a large scale and can be used for photonic applications as well as in molecular sensing.
  • Item
    Non-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applications
    (London : Springer Nature, 2021) Aktas, Ozan; Yamamoto, Yuji; Kaynak, Mehmet; Peacock, Anna C.
    Advanced solid-state devices, including lasers and modulators, require semiconductor heterostructures for nanoscale engineering of the electronic bandgap and refractive index. However, existing epitaxial growth methods are limited to fabrication of vertical heterostructures grown layer by layer. Here, we report the use of finite-element-method-based phase-field modelling with thermocapillary convection to investigate laser inscription of in-plane heterostructures within silicon-germanium films. The modelling is supported by experimental work using epitaxially-grown Si0.5Ge0.5 layers. The phase-field simulations reveal that various in-plane heterostructures with single or periodic interfaces can be fabricated by controlling phase segregation through modulation of the scan speed, power, and beam position. Optical simulations are used to demonstrate the potential for two devices: graded-index waveguides with Ge-rich (>70%) cores, and waveguide Bragg gratings with nanoscale periods (100–500 nm). Periodic heterostructure formation via sub-millisecond modulation of the laser parameters opens a route for post-growth fabrication of in-plane quantum wells and superlattices in semiconductor alloy films.
  • Item
    Photonic lanterns: a practical guide to filament tapering
    (Washington, DC : OSA, 2021) Davenport, John J.; Diab, Momen; Deka, Pranab J.; Tripathi, Aashana; Madhav, Kalaga; Roth, Martin M.
    We present a detailed method of tapering and drawing photonic lanterns using a filament glass processing system. Single-mode fibers (SMFs) were stacked inside a low refractive index, fluorine-doped capillary, which was then heated and tapered to produce a transition from single-mode to multi-mode. Fabrication parameters were considered in four categories: method of preparation and stacking of SMFs into a capillary, heat and filament dimensions of the glass processor, capillary ID, and the use of vacuum during tapering. 19- and 37- fiber lanterns were drawn, demonstrating good fusion between SMF claddings, a clear differentiation between core and cladding in the multimode (MM) section, and well-ordered arrangements between SMFs, which is controlled during the tapering process. The transmission efficiency of a 19-fiber photonic lantern, compared to an MMF with the same core diameter and NA, has a relative transmission efficiency of 1.19 dB or 67.1%. The steps and parameters provided in this paper form a framework for fabricating quality photonic lanterns.
  • Item
    Watt-level femtosecond Tm-doped “mixed” sesquioxide ceramic laser in-band pumped by a Raman fiber laser at 1627 nm
    (Washington, DC : Soc., 2022) Zhang, Ning; Wang, Zhanxin; Liu, Shande; Jing, Wei; Huang, Hui; Huang, Zixuan; Tian, Kangzhen; Yang, Zhiyong; Zhao, Yongguang; Griebner, Uwe; Petrov, Valentin; Chen, Weidong
    We report on a semiconductor saturable absorber mirror mode-locked Tm:(Lu,Sc)2O3 ceramic laser in-band pumped by a Raman fiber laser at 1627 nm. The nonlinear refractive index (n2) of the Tm:(Lu,Sc)2O3 ceramic has been measured to be 4.66 × 10-20 m2/W at 2000 nm. An average output power up to 1.02 W at 2060 nm is achieved for transform-limited 280-fs pulses at a repetition rate of 86.5 MHz, giving an optical efficiency with respect to the absorbed pump power of 36.4%. Pulses as short as 66 fs at 2076 nm are produced at the expense of output power (0.3 W), corresponding to a spectral bandwidth of 69 nm. The present work reveals the potential of Tm3+-doped sesquioxide transparent ceramics for power scaling of femtosecond mode-locked bulk lasers emitting in the 2-μm spectral range.
  • Item
    Strain sensitivity enhancement in suspended core fiber tapers
    (Heidelberg : Springer, 2013) André, R.M.; Silva, S.O.; Becker, M.; Schuster, K.; Rothardt, M.; Bartelt, H.; Marques, M.B.; Frazão, O.
    Suspended core fiber tapers with different cross sections (with diameters from 70 μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change occurs.
  • Item
    Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks
    (Basel : MDPI, 2009) Lindner, E.; Chojetztki, C.; Brueckner, S.; Becker, M.; Rothhardt, M.; Vlekken, J.; Bartelt, H.
    We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks. © 2009 by the authors.
  • Item
    High-visibility photonic crystal fiber interferometer as multifunctional sensor
    (Basel : MDPI AG, 2013) Cárdenas-Sevilla, G.A.; Fávero, F.C.; Villatoro, J.
    A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (~40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10-5.