Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion

2018, Ebner, Christian, Escher, Benjamin, Gammer, Christoph, Eckert, Jürgen, Pauly, Simon, Rentenberger, Christian

Cu45Zr45Al5Ag5 bulk metallic glass samples, processed by high pressure torsion (HPT) under various conditions, were characterized using synchrotron X-ray diffraction, nanoindentation, differential scanning calorimetry, atomic force and transmission electron microscopy. The experimental results clearly show that HPT modifies the amorphous structure by increasing the mean atomic volume. The level of rejuvenation, correlated with the excess mean atomic volume, is enhanced at higher shear strains as inferred from relaxation enthalpies. By mapping of structural and mechanical quantities, the strain-induced rejuvenated state is characterized on cross-sectional HPT samples on a local scale. A clear correlation both between elastic and plastic softening and between softening and excess mean atomic volume is obtained. But also the heterogeneity of the HPT induced rejuvenation is revealed, resulting in the formation of highly strain-softened regions next to less-deformed ones. A hardness drop of up to 20% is associated with an estimated increase of the mean atomic volume of up to 0.75%. Based on synchrotron X-ray diffraction and nanoindentation measurements it is concluded that elastic fluctuations are enhanced in the rejuvenated material on different length scales down to atomic scale. Furthermore, the calculated flexibility volume and the corresponding average mean square atomic displacement is increased. The plastic response during nanoindentation indicates that HPT processing promotes a more homogeneous-like deformation.

Loading...
Thumbnail Image
Item

Rejuvenation through plastic deformation of a La-based metallic glass measured by fast-scanning calorimetry

2020, Meylan, C.M., Orava, J., Greer, A.L.

We explore the glassy states achievable after a metallic glass is formed on liquid quenching. Samples of La55Al25Ni20 (at.%) metallic glass (rod and ribbon) are studied. The extent of structural relaxation at room temperature is characterized for this low-glass-transition temperature glass. Plastic deformation (uniaxial compression) rejuvenates the glass to states of higher enthalpy characteristic of glass formation at high cooling rate. Deformation increases the heterogeneity of the glass, widening the spectrum of relaxation times. The extent of rejuvenation in samples of low aspect ratio is compared with that under conditions of high constraint in notched samples. The deformation-induced rejuvenation is particularly susceptible to reduction on subsequent ageing. Fast-scanning calorimetry is useful in characterizing the dynamics of structural relaxation. The shadow glass transition is more evident on fast heating, and is observed in this glass for the first time. A new excess exothermic effect is observed before the glass transition.