Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

What can we learn from the projections of changes of flow patterns? Results from Polish case studies

2017, Piniewski, Mikołaj, Meresa, Hadush Kidane, Romanowicz, Renata, Osuch, Marzena, Szczes´niak, Mateusz, Kardel, Ignacy, Okruszko, Tomasz, Mezghani, Abdelkader, Kundzewicz, Zbigniew W.

River flow projections for two future time horizons and RCP 8.5 scenario, generated by two projects (CHASE-PL and CHIHE) in the Polish-Norwegian Research Programme, were compared. The projects employed different hydrological models over different spatial domains. The semi-distributed, process-based, SWAT model was used in the CHASE-PL project for the entire Vistula and Odra basins area, whilst the lumped, conceptual, HBV model was used in the CHIHE project for eight Polish catchments, for which the comparison study was made. Climate projections in both studies originated from the common EURO-CORDEX dataset, but they were different, e.g. due to different bias correction approaches. Increases in mean annual and seasonal flows were projected in both studies, yet the magnitudes of changes were largely different, in particular for the lowland catchments in the far future. The HBV-based increases were significantly higher in the latter case than the SWAT-based increases in all seasons except winter. Uncertainty in projections is high and creates a problem for practitioners.

Loading...
Thumbnail Image
Item

Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland

2017, Marcinkowski, P., Piniewski, M., Kardel, I., Szcześniak, M., Benestad, R., Srinivasan, R., Ignar, S., Okruszko, T.

Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021-2050, and far future: 2071-2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models-Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment-European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.

Loading...
Thumbnail Image
Item

CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland

2017, Piniewski, Mikołaj, Szcześniak, Mateusz, Kardel, Ignacy

There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100) under two Representative Concentration Pathways (RCPs). The data set consists of three parts: (1) model inputs; (2) raw model outputs; (3) aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.

Loading...
Thumbnail Image
Item

Modelling Climate Change’s Impact on the Hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland

2019, O’Keeffe, Joanna, Marcinkowski, Paweł, Utratna, Marta, Piniewski, Mikołaj, Kardel, Ignacy, Kundzewicz, Zbigniew, Okruszko, Tomasz

Climate change is expected to affect the water cycle through changes in precipitation, river streamflow, and soil moisture dynamics, and therefore, present a threat to groundwater and surface water-fed wetland habitats and their biodiversity. This article examines the past trends and future impacts of climate change on riparian, water-dependent habitats within the special areas of conservation (SAC) of the Natura 2000 network located within Odra and Vistula River basins in Poland. Hydrological modelling using the Soil and Water Assessment Tool (SWAT) was driven by a set of nine EURO-CORDEX regional climate models under two greenhouse gas concentration trajectories. Changes in the duration of flooding and inundation events were used to assess climate change’s impact on surface water-fed wetland habitats. The groundwater-fed wetlands were evaluated on the basis of changes in soil water content. Information about the current conservation status, threats, and pressures that affect the habitats suggest that the wetlands might dry out. Increased precipitation projected for the future causing increased water supply to both surface water and groundwater-fed wetlands would lead to beneficial outcomes for habitats with good, average, or reduced conservation status. However, habitats with an excellent conservation status that are already in optimum condition could be negatively affected by climate change as increased soil water or duration of overbank flow would exceed their tolerance.

Loading...
Thumbnail Image
Item

Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins

2020, Huang, Shaochun, Shah, Harsh, Naz, Bibi S., Shrestha, Narayan, Mishra, Vimal, Daggupati, Prasad, Ghimire, Uttam, Vetter, Tobias

This study aimed to investigate the influence of hydrological model calibration/validation on discharge projections for three large river basins (the Rhine, Upper Mississippi and Upper Yellow). Three hydrological models (HMs), which have been firstly calibrated against the monthly discharge at the outlet of each basin (simple calibration), were re-calibrated against the daily discharge at the outlet and intermediate gauges under contrast climate conditions simultaneously (enhanced calibration). In addition, the models were validated in terms of hydrological indicators of interest (median, low and high flows) as well as actual evapotranspiration in the historical period. The models calibrated using both calibration methods were then driven by the same bias corrected climate projections from five global circulation models (GCMs) under four Representative Concentration Pathway scenarios (RCPs). The hydrological changes of the indicators were represented by the ensemble median, ensemble mean and ensemble weighted means of all combinations of HMs and GCMs under each RCP. The results showed moderate (5–10%) to strong influence (> 10%) of the calibration methods on the ensemble medians/means for the Mississippi, minor to moderate (up to 10%) influence for the Yellow and minor (< 5%) influence for the Rhine. In addition, the enhanced calibration/validation method reduced the shares of uncertainty related to HMs for three indicators in all basins when the strict weighting method was used. It also showed that the successful enhanced calibration had the potential to reduce the uncertainty of hydrological projections, especially when the HM uncertainty was significant after the simple calibration. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Improvement of Hydrological Simulations by Applying Daily Precipitation Interpolation Schemes in Meso-Scale Catchments

2015, Szcześniak, M., Piniewski, M.