Search Results

Now showing 1 - 5 of 5
  • Item
    Mineral dust in central Asia: 18-month lidar measurements in Tajikistan during the central Asian dust experiment (CADEX)
    (Les Ulis : EDP Sciences, 2018) Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Makhmudov, Abduvosit; Nazarov, Bakhron I.; Schettler, Georg; Fomba, K.Wadinga; Müller, Konrad; Heinold, Bernd; Baars, Holger; Engelmann, Ronny; Ansmann, Albert; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Tajikistan is often affected by atmospheric mineral dust. The direct and indirect radiative effects of dust play a sensitive role in the climate system in Central Asia. The Central Asian Dust Experiment (CADEX) provides first lidar measurements in Tajikistan. The autonomous multiwavelength polarization Raman lidar PollyXT was operated for 1.5 years (2015/16) in Dushanbe. In spring, lofted layers of long-range transported dust and in summer/ autumn, lower laying dust from local or regional sources with large optical thicknesses occurred.
  • Item
    Triple-wavelength lidar observations of the linear depolarization ratio of dried marine particles
    (Les Ulis : EDP Sciences, 2018) Haarig, Moritz; Ansmann, Albert; Baars, Holger; Engelmann, Ronny; Althausen, Dietrich; Bohlmann, Stephanie; Gasteiger, Josef; Farrell, David; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    For aerosol typing with lidar, sea salt particles are usually assumed to be spherical with a consequently low depolarization ratio. Evidence of dried marine particles at the top of the humid marine aerosol layer with a depolarization ratio up to 0.1 has been found at predominately maritime locations on Barbados and in the Southern Atlantic. The depolarization ratio for these probably cubic sea salt particles has been measured at three wavelengths (355, 532 and 1064 nm) simultaneously for the first time and compared to model simulations.
  • Item
    Vertical separation of the atmospheric aerosol components by using poliphon retrieval in polarized micro pulse lidar (P-MPL) measurements: Case studies of specific climate-relevant aerosol types
    (Les Ulis : EDP Sciences, 2018) Córdoba-Jabonero, Carmen; Sicard, Michaël; Ansmann, Albert; del Águila, Ana; Baars, Holger; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    POLIPHON (POlarization-LIdar PHOtometer Networking) retrieval consists in the vertical separation of two/three particle components in aerosol mixtures, highlighting their relative contributions in terms of the optical properties and mass concentrations. This method is based on the specific particle linear depolarization ratio given for different types of aerosols, and is applied to the new polarized Micro-Pulse Lidar (P-MPL). Case studies of specific climate-relevant aerosols (dust particles, fire smoke, and pollen aerosols, including a clean case as reference) observed over Barcelona (Spain) are presented in order to evaluate firstly the potential of P-MPLs measurements in combination with POLIPHON for retrieving the vertical separation of those particle components forming aerosol mixtures and their properties.
  • Item
    Tracking the Saharan Air Layer with shipborne lidar across the tropical Atlantic
    (Hoboken, NJ : Wiley, 2014) Kanitz, T.; Engelmann, R.; Heinold, B.; Baars, H.; Skupin, A.; Ansmann, A.
    Saharan dust was observed with shipborne lidar from 60° to 20°W along 14.5°N during a 1-month transatlantic cruise of the research vessel Meteor. About 4500 km off the coast of Africa, mean extinction and backscatter-related Ångström exponent of 0.1, wavelength-independent extinction-to-backscatter ratios (lidar ratios) of around 45 sr, and particle linear depolarization ratio of 20% were found for aged dust (transport time >10 days). In contrast, dust with a shorter atmospheric residence time of 2–3 days showed Ångström exponents of −0.5 (backscatter coefficient) and 0.1 (extinction coefficient), mean lidar ratios of 64 and 50 sr, and particle linear depolarization ratios of 22 and 26% at 355 and 532 nm wavelength, respectively. Traces of fire smoke were also detected in the observed dust layers. The lidar observations were complemented by Aerosol Robotic Network handheld Sun photometer measurements, which revealed a mean total atmospheric column aerosol optical thickness of 0.05 for pure marine conditions (in the absence of lofted aerosol layers) and roughly 0.9 during a strong Saharan dust outbreak. The achieved data set was compared with first Consortium for Small Scale Modeling-Multi-Scale Chemistry Aerosol Transport simulations. The simulated vertical aerosol distribution showed good agreement with the lidar observations.
  • Item
    First Ever Observations of Mineral Dust in Wintertime over Warsaw, Poland
    (Basel : MDPI, 2022) Szczepanik, Dominika M.; Ortiz-Amezcua, Pablo; Heese, Birgit; D’Amico, Giuseppe; Stachlewska, Iwona S.
    The long-range transport of desert dust over the area of the temperate climate zone is associated with the influx of hot air masses due to the location of the sources of this aerosol in the tropical climate zone. Between 24–26 February 2021, such an aerosol outbreak took place and reached Central Europe. The mean temperature of +11.7 °C was recorded during the event. A comparison of this value to the 20-year (2000–2020) average February temperature for Warsaw (−0.2 °C) indicates the uniqueness of the meteorological conditions. It was the first wintertime inflow of Saharan dust over Warsaw, the presence of which was confirmed by lidar and sun-photometer measurements. The properties of the desert dust layers were obtained; the mean values of the particle depolarization for the fully developed mineral dust layer were 13 ± 3% and 22 ± 4% for 355 and 532 nm, respectively. The aerosol optical thickness was high with average values >0.36 for all wavelengths smaller than 500 nm. The three-modal, aerosol size distribution was dominated by coarse-mode particles, with a visible contribution of accumulation-mode particles. It suggests the possible presence of other aerosol types.