Search Results

Now showing 1 - 6 of 6
  • Item
    Application of scanning electrochemical microscopy for topography imaging of supported lipid bilayers
    (Cambridge : RSC Publ., 2022) Nasri, Zahra; Memari, Seyedali; Striesow, Johanna; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Wende, Kristian
    Oxidative stress in cellular environments may cause lipid oxidation and membrane degradation. Therefore, studying the degree of lipid membrane morphological changes by reactive oxygen and nitrogen species will be informative in oxidative stress-based therapies. This study introduces the possibility of using scanning electrochemical microscopy as a powerful imaging technique to follow the topographical changes of a solid-supported lipid bilayer model induced by reactive species produced from gas plasma. The introduced strategy is not limited to investigating the effect of reactive species on the lipid bilayer but could be extended to understand the morphological changes of the lipid bilayer due to the action of membrane proteins or antimicrobial peptides.
  • Item
    Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes
    (London : Royal Society of Chemistry (RSC), 2021) Kranz, Christine; Wächtler, Maria
    Research on light-driven catalysis has gained tremendous importance due to the ever-increasing power consumption and the threatening situation of global warming related to burning fossil fuels. Significant efforts have been dedicated to artificial photosynthesis mimicking nature to split H2O into H2 and O2 by solar energy. Novel semiconductor und molecular photocatalysts focusing on one-step excitation processes via single component photocatalysts or via two-step excitation processes mimicking the Z-scheme of natural photosynthesis are currently developed. Analytical and physicochemical methods, which provide information at different time and length scales, are used to gain fundamental understanding of all processes leading to catalytic activity, i.e., light absorption, charge separation, transfer of charges to the reaction centres and catalytic turnover, but also understanding degradation processes of the photocatalytic active material. Especially, molecular photocatalysts still suffer from limited long-Term stability due to the formation of reactive intermediates, which may lead to degradation. Although there is an overwhelming number of research articles and reviews focussing on various materials for photocatalytic water splitting, to date only few reviews have been published providing a comprehensive overview on methods for characterizing such materials. This review will highlight spectroscopic, spectroelectrochemical, and electrochemical approaches in respect to their potential in studying processes in semiconductor and (supra)molecular photocatalysts. Special emphasis will be on spectroscopic methods to investigate light-induced processes in intermediates of sequential electron transfer chains. Further, microscopic characterization methods, which are predominantly used for semiconducting and hybrid photocatalytic materials will be reviewed as surface area, structure, facets, defects, and bulk properties such as crystallinity and crystal size are key parameters for charge separation, transfer processes and suppression of charge recombination. Recent developments in scanning probe microscopy will also be highlighted as such techniques are highly suited for studying photocatalytic active material. © The Royal Society of Chemistry.
  • Item
    Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states
    (Washington, DC : American Chemical Society, 2014) Schell, A.W.; Engel, P.; Werra, J.F.M.; Wolff, C.; Busch, K.; Benson, O.
    Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.
  • Item
    Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules
    (College Park, MD : Institute of Physics Publishing, 2008) Wang, L.; Rastelli, A.; Kiravittaya, S.; Atkinson, P.; Ding, F.; Bof Bufon, C.C.; Hermannstädter, C.; Witzany, M.; Beirne, G.J.; Michler, P.; Schmidt, O.G.
    We report on the fabrication, detailed characterization and modeling of lateral InGaAs quantum dot molecules (QDMs) embedded in a GaAs matrix and we discuss strategies to fully control their spatial configuration and electronic properties. The three-dimensional morphology of encapsulated QDMs was revealed by selective wet chemical etching of the GaAs top capping layer and subsequent imaging by atomic force microscopy (AFM). The AFM investigation showed that different overgrowth procedures have a profound consequence on the QDM height and shape. QDMs partially capped and annealed in situ for micro- photoluminescence spectroscopy consist of shallow but well-defined quantum dots (QDs) in contrast to misleading results usually provided by surface morphology measurements when they are buried by a thin GaAs layer. This uncapping approach is crucial for determining the QDM structural parameters, which are required for modeling the system. A single-band effective-mass approximation is employed to calculate the confined electron and heavy-hole energy levels, taking the geometry and structural information extracted from the uncapping experiments as inputs. The calculated transition energy of the single QDM shows good agreement with the experimentally observed values. By decreasing the edge-to-edge distance between the two QDs within a QDM, a splitting of the electron (hole) wavefunction into symmetric and antisymmetric states is observed, indicating the presence of lateral coupling. Site control of such lateral QDMs obtained by growth on a pre-patterned substrate, combined with a technology to fabricate gate structures at well-defined positions with respect to the QDMs, could lead to deterministically controlled devices based on QDMs. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Huge impact of compressive strain on phase transition temperatures in epitaxial ferroelectric KxNa1-xNbO3 thin films
    (Melville, NY : American Inst. of Physics, 2019) Von Helden, L.; Bogula, L.; Janolin, P.-E.; Hanke, M.; Breuer, T.; Schmidbauer, M.; Ganschow, S.; Schwarzkopf, J.
    We present a study in which ferroelectric phase transition temperatures in epitaxial KxNa1-xNbO3 films are altered systematically by choosing different (110)-oriented rare-earth scandate substrates and by variation of the potassium to sodium ratio. Our results prove the capability to continuously shift the ferroelectric-to-ferroelectric transition from the monoclinic MC to orthorhombic c-phase by about 400 °C via the application of anisotropic compressive strain. The phase transition was investigated in detail by monitoring the temperature dependence of ferroelectric domain patterns using piezoresponse force microscopy and upon analyzing structural changes by means of high resolution X-ray diffraction including X-ray reciprocal space mapping. Moreover, the temperature evolution of the effective piezoelectric coefficient d33,f was determined using double beam laser interferometry, which exhibits a significant dependence on the particular ferroelectric phase. © 2019 Author(s).
  • Item
    Simultaneous magnetic field and field gradient mapping of hexagonal MnNiGa by quantitative magnetic force microscopy
    (London : Springer Nature, 2023) Freitag, Norbert H.; Reiche, Christopher F.; Neu, Volker; Devi, Parul; Burkhardt, Ulrich; Felser, Claudia; Wolf, Daniel; Lubk, Axel; Büchner, Bernd; Mühl, Thomas
    Magnetic force microscopy (MFM) is a scanning microscopy technique that is commonly employed to probe the sample’s magnetostatic stray fields via their interaction with a magnetic probe tip. In this work, a quantitative, single-pass MFM technique is presented that maps one magnetic stray-field component and its spatial derivative at the same time. This technique uses a special cantilever design and a special high-aspect-ratio magnetic interaction tip that approximates a monopole-like moment. Experimental details, such as the control scheme, the sensor design, which enables simultaneous force and force gradient measurements, as well as the potential and limits of the monopole description of the tip moment are thoroughly discussed. To demonstrate the merit of this technique for studying complex magnetic samples it is applied to the examination of polycrystalline MnNiGa bulk samples. In these experiments, the focus lies on mapping and analyzing the stray-field distribution of individual bubble-like magnetization patterns in a centrosymmetric [001] MnNiGa phase. The experimental data is compared to calculated and simulated stray-field distributions of 3D magnetization textures, and, furthermore, bubble dimensions including diameters are evaluated. The results indicate that the magnetic bubbles have a significant spatial extent in depth and a buried bubble top base.