Search Results

Now showing 1 - 3 of 3
  • Item
    Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
    (London : Nature Publishing Group, 2021) George, A.; Fistul, M.V.; Gruenewald, M.; Kaiser, D.; Lehnert, T.; Mupparapu, R.; Neumann, C.; Hübner, U.; Schaal, M.; Masurkar, N.; Arava, L.M.R.; Staude, I.; Kaiser, U.; Fritz, T.; Turchanin, A.
    Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.
  • Item
    Evidence for a percolative Mott insulator-metal transition in doped Sr2IrO4
    (College Park, MD : APS, 2021) Sun, Zhixiang; Guevara, Jose M.; Sykora, Steffen; Pärschke, Ekaterina M.; Manna, Kaustuv; Maljuk, Andrey; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd; Hess, Christian
    Despite many efforts to rationalize the strongly correlated electronic ground states in doped Mott insulators, the nature of the doping-induced insulator-to-metal transition is still a subject under intensive investigation. Here, we probe the nanoscale electronic structure of the Mott insulator Sr2IrO4−δ with low-temperature scanning tunneling microscopy and find an enhanced local density of states (LDOS) inside the Mott gap at the location of individual defects which we interpret as defects at apical oxygen sites. A chiral behavior in the topography for those defects has been observed. We also visualize the local enhanced conductance arising from the overlapping of defect states which induces finite LDOS inside of the Mott gap. By combining these findings with the typical spatial extension of isolated defects of about 2 nm, our results indicate that the insulator-to-metal transition in Sr2IrO4−δ could be percolative in nature.
  • Item
    Interplay of electric field and disorder in Dirac liquid silicene
    (Berlin ; Heidelberg : Springer, 2021) Craco, L.; Carara, S.S.; Leoni, S.
    Layered materials with buckled structure offer a promising route to explore distinct phases of quantum matter. Using GGA + DMFT we reveal the complex interplay between perpendicular electric field and site-diagonal disorder in the Dirac liquid electronic state of silicene. The electronic structure we derive is promising in the sense that it leads to results that might explain why out-of-plane electric field plus moderate disorder can generate marginal Dirac valleys consistent with scanning tunneling spectroscopy of silicene on Ag substrates.