Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Persistent peri-Heptacene: Synthesis and In Situ Characterization

2021, Ajayakumar, M.R., Ma, Ji, Lucotti, Andrea, Schellhammer, Karl Sebastian, Serra, Gianluca, Dmitrieva, Evgenia, Rosenkranz, Marco, Komber, Hartmut, Liu, Junzhi, Ortmann, Frank, Tommasini, Matteo, Feng, Xinliang

n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3). © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Helical Nanographenes Containing an Azulene Unit : Synthesis, Crystal Structures, and Properties

2019, Ma, Ji, Fu, Yubin, Dmitrieva, Evgenia, Liu, Fupin, Komber, Hartmut, Hennersdorf, Felix, Popov, Alexey A., Weigand, Jan J., Liu, Junzhi, Feng, Xinliang

Three unprecedented helical nanographenes (1, 2, and 3) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X-ray crystallographic analysis. The embedded azulene unit in 2 possesses a record-high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis-spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps (2: 1.88 eV; 3: 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in-situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.