Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

2016, Riahi, Keywan, van Vuuren, Detlef P., Kriegler, Elmar, Edmonds, Jae, O’Neill, Brian C., Fujimori, Shinichiro, Bauer, Nico, Calvin, Katherine, Dellink, Rob, Fricko, Oliver, Lutz, Wolfgang, Popp, Alexander, Crespo Cuaresma, Jesus, KC, Samir, Leimbach, Marian, Jiang, Leiwen, Kram, Tom, Rao, Shilpa, Emmerling, Johannes, Ebi, Kristie, Hasegawa, Tomoko, Havlik, Petr, Humpenöder, Florian, Aleluia Da Silva, Lara, Smith, Steve, Stehfest, Elke, Bosetti, Valentina, Eom, Jiyong, Gernaat, David, Masui, Toshihiko, Rogelj, Joeri, Strefler, Jessica, Drouet, Laurent, Krey, Volker, Luderer, Gunnar, Harmsen, Mathijs, Takahashi, Kiyoshi, Baumstark, Lavinia, Doelman, Jonathan C., Kainuma, Mikiko, Klimont, Zbigniew, Marangoni, Giacomo, Lotze-Campen, Hermann, Obersteiner, Michael, Tabeau, Andrzej, Tavoni, Massimo

This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 Â°C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).

Loading...
Thumbnail Image
Item

Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways

2017, Nauels, Alexander, Rogelj, Joeri, Schleussner, Carl-Friedrich, Meinshausen, Malte, Mengel, Matthias

In order to assess future sea level rise and its societal impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present sea level rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100 radiative forcing targets (FTs). Future SLR is estimated with a comprehensive SLR emulator that accounts for Antarctic rapid discharge from hydrofracturing and ice cliff instability. Across all baseline scenario realizations (no dedicated climate mitigation), we find 2100 median SLR relative to 1986–2005 of 89 cm (likely range: 57–130 cm) for SSP1, 105 cm (73–150 cm) for SSP2, 105 cm (75–147 cm) for SSP3, 93 cm (63–133 cm) for SSP4, and 132 cm (95–189 cm) for SSP5. The 2100 sea level responses for combined SSP-FT scenarios are dominated by the mitigation targets and yield median estimates of 52 cm (34–75 cm) for FT 2.6 Wm−2, 62 cm (40–96 cm) for FT 3.4 Wm−2, 75 cm (47–113 cm) for FT 4.5 Wm−2, and 91 cm (61–132 cm) for FT 6.0 Wm−2. Average 2081–2100 annual SLR rates are 5 mm yr−1 and 19 mm yr−1 for FT 2.6 Wm−2 and the baseline scenarios, respectively. Our model setup allows linking scenario-specific emission and socioeconomic indicators to projected SLR. We find that 2100 median SSP SLR projections could be limited to around 50 cm if 2050 cumulative CO2 emissions since pre-industrial stay below 850 GtC, with a global coal phase-out nearly completed by that time. For SSP mitigation scenarios, a 2050 carbon price of 100 US$2005 tCO2 −1 would correspond to a median 2100 SLR of around 65 cm. Our results confirm that rapid and early emission reductions are essential for limiting 2100 SLR.