Search Results

Now showing 1 - 2 of 2
  • Item
    Modeling the contact mechanics of hydrogels
    (Basel : MDPI, 2019) Mueser, M.H.; Li, H.; Bennewitz, R.
    A computationally lean model for the coarse-grained description of contact mechanics of hydrogels is proposed and characterized. It consists of a simple bead-spring model for the interaction within a chain, potentials describing the interaction between monomers and mold or confining walls, and a coarse-grained potential reflecting the solvent-mediated effective repulsion between non-bonded monomers. Moreover, crosslinking only takes place after the polymers have equilibrated in their mold. As such, the model is able to reflect the density, solvent quality, and the mold hydrophobicity that existed during the crosslinking of the polymers. Finally, such produced hydrogels are exposed to sinusoidal indenters. The simulations reveal a wavevector-dependent effective modulus E*(q) with the following properties: (i) stiffening under mechanical pressure, and a sensitivity of E*(q) on (ii) the degree of crosslinking at large wavelengths, (iii) the solvent quality, and (iv) the hydrophobicity of the mold in which the polymers were crosslinked. Finally, the simulations provide evidence that the elastic heterogeneity inherent to hydrogels can suffice to pin a compressed hydrogel to a microscopically frictionless wall that is undulated at a mesoscopic length scale. Although the model and simulations of this feasibility study are only two-dimensional, its generalization to three dimensions can be achieved in a straightforward fashion. © 2019 by the authors.
  • Item
    Mathematical model for a heat pump dryer for aromatic plant
    (Amsterdam : Elsevier, 2013) Hossain, Mohammed Ayub; Gottschalk, Klaus; Hassan, Mohammad Shoeb
    A mathematical model was developed to evaluate the performance of heat pump dryer for drying of aromatic plants. The model consists of three sub-models; namely, drying model, heat pump model, and performance model. Drying model was developed based on mass balance, heat balance, heat transfer and drying rate equations. Heat pump sub-model consists of some theoretical and empirical equations for estimating the parameters of evaporator, compressor, condenser and expansion valve. The performance sub-model was the equations for prediction of drying efficiency, COP (coefficient of performance), MER (moisture evaporating rate) and SMER (specific moisture evaporating rate). The model was validated with the experimental data. The experiments was conducted in a fixed bed drying of valerian roots (Valeriana officinalis L.) in cooperation with a agricultural company (Agrargenossenschaft Nöbdenitz e.G., Thüringen) in Thüringen, Germany. Data logger was used to record the temperature, relative humidity, humidity ratio and enthalpy of air at different positions of the dryer equipped with different types of sensors. The average drying air temperature was 36.84°C and relative humidity was about 20%. About 89 hours were required to reduce the moisture content of valerian roots from 89 to 9% (wb). The simulated results (temperature, relative humidity and moisture content) agreed well with the experimental results. The average COP, MER and SMER and drying efficiency were 5.45, 140.03 kg/h, 0.038 kg/kWh, and 78.23%, respectively. This model may be used for design data for heat pump dryer for drying of aromatic plants as well as other heat sensitive crops.