Search Results

Now showing 1 - 4 of 4
  • Item
    Microwave plasma discharges for biomass pretreatment: Degradation of a sodium carboxymethyl cellulose model
    (New York, NY : American Inst. of Physics, 2020) Honnorat, B.; Brüser, V.; Kolb, J.F.
    Biogas production is an important component of an environmentally benign renewable energy strategy. However, the cost-effectiveness of biogas production from biomass is limited by the presence of polymeric structures, which are recalcitrant to digestion by bacteria. Therefore, pretreatments must often be applied prior to anaerobic fermentation to increase yields of biogas. Many physico-chemical pretreatments have a high energy demand and are generally costly. An alternative could be the ignition of a plasma directly in the biomass substrate. The reactive species that are generated by plasma-liquid interactions, such as hydroxyl radicals and hydrogen peroxides, could contribute significantly to the disintegration of cell walls and the breakage of poorly digestible polymers. With respect to economic, processing, and other potential benefits, a microwave instigated and sustained plasma was investigated. A microwave circuit transmitted 2-kW pulses into a recirculated sodium carboxymethyl cellulose solution, which mimicked the rheological properties of biomass. Each microwave pulse had a duration of 12.5 ms and caused the ignition of a discharge after a vapor bubble had formed. Microwaves were absorbed in the process with an efficiency of ∼97%. Slow-motion imaging showed the development of the discharge. The plasma discharges provoked a decrease in the viscosity, probably caused by the shortening of polymer chains of the cellulose derivative. The decrease in viscosity by itself could reduce processing costs and promotes bacterial activity in actual biomass. The results demonstrate the potential of microwave in-liquid plasma discharges for the pretreatment of biomass. © 2020 Author(s).
  • Item
    Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet
    (College Park, MD : Institute of Physics Publishing, 2010) Koban, I.; Matthes, R.; Hübner, N.-O.; Welk, A.; Meisel, P.; Holtfreter, B.; Sietmann, R.; Kindel, E.; Weltmann, K.-D.; Kramer, A.; Kocher, T.
    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% Chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Binding energy referencing for XPS in Alkali metal-based battery materials research (II): Application to complex composite electrodes
    (Basel : MDPI AG, 2018) Oswald, S.; Thoss, F.; Zier, M.; Hoffmann, M.; Jaumann, T.; Herklotz, M.; Nikolowski, K.; Scheiba, F.; Kohl, M.; Giebeler, L.; Mikhailova, D.; Ehrenberg, H.
    X-ray photoelectron spectroscopy (XPS) is a key method for studying (electro-)chemical changes in metal-ion battery electrode materials. In a recent publication, we pointed out a conflict in binding energy (BE) scale referencing at alkali metal samples, which is manifested in systematic deviations of the BEs up to several eV due to a specific interaction between the highly reactive alkali metal in contact with non-conducting surrounding species. The consequences of this phenomenon for XPS data interpretation are discussed in the present manuscript. Investigations of phenomena at surface-electrolyte interphase regions for a wide range of materials for both lithium and sodium-based applications are explained, ranging from oxide-based cathode materials via alloys and carbon-based anodes including appropriate reference chemicals. Depending on material class and alkaline content, specific solutions are proposed for choosing the correct reference BE to accurately define the BE scale. In conclusion, the different approaches for the use of reference elements, such as aliphatic carbon, implanted noble gas or surface metals, partially lack practicability and can lead to misinterpretation for application in battery materials. Thus, this manuscript provides exemplary alternative solutions.
  • Item
    Drilling into an active mofette: pilot-hole study of the impact of CO2-rich mantle-derived fluids on the geo–bio interaction in the western Eger Rift (Czech Republic)
    (Sapporo : IODP, 2017) Bussert, Robert; Kämpf, Horst; Flechsig, Christina; Hesse, Katja; Nickschick, Tobias; Liu, Qi; Umlauft, Josefine; Vylita, Tomáš; Wagner, Dirk; Wonik, Thomas; Flores, Hortencia Estrella; Alawi, Mashal
    Microbial life in the continental "deep biosphere" is closely linked to geodynamic processes, yet this interaction is poorly studied. The Cheb Basin in the western Eger Rift (Czech Republic) is an ideal place for such a study because it displays almost permanent seismic activity along active faults with earthquake swarms up to ML 4.5 and intense degassing of mantle-derived CO2 in conduits that show up at the surface in form of mofettes. We hypothesize that microbial life is significantly accelerated in active fault zones and in CO2 conduits, due to increased fluid and substrate flow. To test this hypothesis, pilot hole HJB-1 was drilled in spring 2016 at the major mofette of the Hartoušov mofette field, after extensive pre-drill surveys to optimize the well location. After drilling through a thin caprock-like structure at 78.5 m, a CO2 blowout occurred indicating a CO2 reservoir in the underlying sandy clay. A pumping test revealed the presence of mineral water dominated by Na+, Ca2+, HCO3−, SO42− (Na-Ca-HCO3-SO4 type) having a temperature of 18.6 °C and a conductivity of 6760 µS cm−1. The high content of sulfate (1470 mg L−1) is typical of Carlsbad Spa mineral waters. The hole penetrated about 90 m of Cenozoic sediments and reached a final depth of 108.50 m in Palaeozoic schists. Core recovery was about 85 %. The cored sediments are mudstones with minor carbonates, sandstones and lignite coals that were deposited in a lacustrine environment. Deformation structures and alteration features are abundant in the core. Ongoing studies will show if they result from the flow of CO2-rich fluids or not.