Search Results

Now showing 1 - 2 of 2
  • Item
    Mechanical performance and corrosion behaviour of Zr-based bulk metallic glass produced by selective laser melting
    (Amsterdam : Elsevier B.V., 2020) Deng, L.; Gebert, A.; Zhang, L.; Chen, H.Y.; Gu, D.D.; Kühn, U.; Zimmermann, M.; Kosiba, K.; Pauly, S.
    Nearly fully dense, glassy Zr52.5Cu17.9Ni14.6Al10Ti5 bulk specimens were fabricated by selective laser melting (SLM) and their behaviour during compressive loading, during wear testing and in a corrosive medium was investigated. Their performance was compared with as-cast material of the same composition. The additively manufactured samples exhibit a yield strength around 1700 MPa combined with a plastic strain of about 0.5% after yielding despite the residual porosity of 1.3%, which is distributed uniformly in the samples. The propagation of shear bands in the bulk metallic glass prepared by SLM was studied. The specific wear rate and the worn surfaces demonstrated that similar wear mechanisms are active in the SLM and the as-cast samples. Hence, manufacturing the glass in layers does not adversely affect the wear properties. The same holds for the corrosion tests, which were carried out in 0.01 M Na2SO4 and 0.1 M NaCl electrolyte. The anodic polarization curves of SLM samples and as-cast samples revealed a similar corrosion behaviour. However, the SLM samples have a slightly reduced susceptibility to pitting corrosion and exhibit an improved surface healing ability, which might be attributed to an improved homogeneity of the additively manufactured glass.
  • Item
    Towards uniform electrochemical porosification of bulk HVPE-grown GaN
    (Pennington, NJ : Electrochemical Society Inc., 2019) Monaico, E.; Moise, C.; Mihai, G.; Ursaki, V.V.; Leistner, K.; Tiginyanu, I.M.; Enachescu, M.; Nielsch, K.
    In this paper, we report on results of a systematic study of porous morphologies obtained using anodization of HVPE-grown crystalline GaN wafers in HNO3, HCl, and NaCl solutions. The anodization-induced nanostructuring is found to proceed in different ways on N-and Ga-faces of polar GaN substrates. Complex pyramidal structures are disclosed and shown to be composed of regions with the degree of porosity modulated along the pyramid surface. Depending on the electrolyte and applied anodization voltage, formation of arrays of pores or nanowires has been evidenced near the N-face of the wafer. By adjusting the anodization voltage, we demonstrate that both current-line oriented pores and crystallographic pores are generated. In contrast to this, porosification of the Ga-face proceeds from some imperfections on the surface and develops in depth up to 50 μm, producing porous matrices with pores oriented perpendicularly to the wafer surface, the thickness of the pore walls being controlled by the applied voltage. The observed peculiarities are explained by different values of the electrical conductivity of the material near the two wafer surfaces.