Search Results

Now showing 1 - 2 of 2
  • Item
    Magnetic tornadoes and chromospheric swirls – Definition and classification
    (Milton Park : Taylor & Francis, 2013) Wedemeyer, Sven; Scullion, Eamon; Steiner, Oskar; de la Cruz Rodriguez, Jaime; Rouppe van der Voort, Luc
    Chromospheric swirls are the observational signatures of rotating magnetic field structures in the solar atmosphere, also known as magnetic tornadoes. Swirls appear as dark rotating features in the core of the spectral line of singly ionized calcium at a wavelength of 854.2 nm. This signature can be very subtle and difficult to detect given the dynamic changes in the solar chromosphere. Important steps towards a systematic and objective detection method are the compilation and characterization of a statistically significant sample of observed and simulated chromospheric swirls. Here, we provide a more exact definition of the chromospheric swirl phenomenon and also present a first morphological classification of swirls with three types: (I) Ring, (II) Split, (III) Spiral. We also discuss the nature of the magnetic field structures connected to tornadoes and the influence of limited spatial resolution on the appearance of their photospheric footpoints.
  • Item
    Vortex Motions in the Solar Atmosphere: Definitions, Theory, Observations, and Modelling
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Tziotziou, K.; Scullion, E.; Shelyag, S.; Steiner, O.; Khomenko, E.; Tsiropoula, G.; Canivete Cuissa, J.R.; Wedemeyer, S.; Kontogiannis, I.; Yadav, N.; Kitiashvili, I. N.; Skirvin, S.J.; Dakanalis, I.; Kosovichev, A.G.; Fedun, V.
    Vortex flows, related to solar convective turbulent dynamics at granular scales and their interplay with magnetic fields within intergranular lanes, occur abundantly on the solar surface and in the atmosphere above. Their presence is revealed in high-resolution and high-cadence solar observations from the ground and from space and with state-of-the-art magnetoconvection simulations. Vortical flows exhibit complex characteristics and dynamics, excite a wide range of different waves, and couple different layers of the solar atmosphere, which facilitates the channeling and transfer of mass, momentum and energy from the solar surface up to the low corona. Here we provide a comprehensive review of documented research and new developments in theory, observations, and modelling of vortices over the past couple of decades after their observational discovery, including recent observations in Hα, innovative detection techniques, diverse hydrostatic modelling of waves and forefront magnetohydrodynamic simulations incorporating effects of a non-ideal plasma. It is the first systematic overview of solar vortex flows at granular scales, a field with a plethora of names for phenomena that exhibit similarities and differences and often interconnect and rely on the same physics. With the advent of the 4-m Daniel K. Inouye Solar Telescope and the forthcoming European Solar Telescope, the ongoing Solar Orbiter mission, and the development of cutting-edge simulations, this review timely addresses the state-of-the-art on vortex flows and outlines both theoretical and observational future research directions.