Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era

2021, Georgoulis, Manolis K., Bloomfield, D. Shaun, Piana, Michele, Massone, Anna Maria, Soldati, Marco, Gallagher, Peter T., Pariat, Etienne, Vilmer, Nicole, Buchlin, Eric, Baudin, Frederic, Csillaghy, Andre, Sathiapal, Hanna, Jackson, David R., Alingery, Pablo, Benvenuto, Federico, Campi, Cristina, Florios, Konstantinos, Gontikakis, Constantinos, Guennou, Chloe, Guerra, Jordan A., Kontogiannis, Ioannis, Latorre, Vittorio, Murray, Sophie A., Park, Sung-Hong, Stachelski, Samuel von, Torbica, Aleksandar, Vischi, Dario, Worsfold, Mark

The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.

Loading...
Thumbnail Image
Item

Detection of Energy Cutoffs in Flare-accelerated Electrons

2021, Xia, Fanxiaoyu, Su, Yang, Wang, Wen, Wang, Linghua, Warmuth, Alexander, Gan, Weiqun, Li, Youping

Energy cutoffs in electron distribution define the lower and upper limits on the energy range of energetic electrons accelerated in solar flares. They are crucial parameters for understanding particle acceleration processes and energy budgets. Their signatures have been reported in studies of flattened flare X-ray spectra, i.e., the impulsive emission of nonthermal bremsstrahlung from energetic electrons impacting ambient, thermal plasma. However, these observations have not provided unambiguous constraints on the cutoffs. Moreover, other processes may result in similar spectral features. Even the existence and necessity of cutoffs as physical parameters of energetic electrons have been under debate. Here we report a search for their signatures in flare-accelerated electrons with two approaches, i.e., in both X-ray spectra and solar energetic particle (SEP) events. These represent two different electron populations, but may contain information of the same acceleration process. By studying a special group of late impulsive flares, and a group of selected SEP events, we found evidence of cutoffs revealed in both X-ray spectra and SEP electron distributions. In particular, we found for the first time consistent low- and high-energy cutoffs in both hard X-ray-producing and escaping electrons in two events. We also showed the importance of high-energy cutoff in studies of spectral shapes. These results provide evidence of cutoffs in flare-accelerated energetic electrons and new clues for constraining electron distribution parameters and particle acceleration models.

Loading...
Thumbnail Image
Item

Observational Signatures of Tearing Instability in the Current Sheet of a Solar Flare

2022, Lu, Lei, Feng, Li, Warmuth, Alexander, Veronig, Astrid M., Huang, Jing, Liu, Siming, Gan, Weiqun, Ning, Zongjun, Ying, Beili, Gao, Guannan

Magnetic reconnection is a fundamental physical process converting magnetic energy into not only plasma energy but also particle energy in various astrophysical phenomena. In this Letter, we show a unique data set of a solar flare where various plasmoids were formed by a continually stretched current sheet. Extreme ultraviolet images captured reconnection inflows, outflows, and particularly the recurring plasma blobs (plasmoids). X-ray images reveal nonthermal emission sources at the lower end of the current sheet, presumably as large plasmoids with a sufficiently amount of energetic electrons trapped in them. In the radio domain, an upward, slowly drifting pulsation structure, followed by a rare pair of oppositely drifting structures, was observed. These structures are supposed to map the evolution of the primary and the secondary plasmoids formed in the current sheet. Our results on plasmoids at different locations and scales shed important light on the dynamics, plasma heating, particle acceleration, and transport processes in the turbulent current sheet and provide observational evidence for the cascading magnetic reconnection process.