Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Detection of Energy Cutoffs in Flare-accelerated Electrons

2021, Xia, Fanxiaoyu, Su, Yang, Wang, Wen, Wang, Linghua, Warmuth, Alexander, Gan, Weiqun, Li, Youping

Energy cutoffs in electron distribution define the lower and upper limits on the energy range of energetic electrons accelerated in solar flares. They are crucial parameters for understanding particle acceleration processes and energy budgets. Their signatures have been reported in studies of flattened flare X-ray spectra, i.e., the impulsive emission of nonthermal bremsstrahlung from energetic electrons impacting ambient, thermal plasma. However, these observations have not provided unambiguous constraints on the cutoffs. Moreover, other processes may result in similar spectral features. Even the existence and necessity of cutoffs as physical parameters of energetic electrons have been under debate. Here we report a search for their signatures in flare-accelerated electrons with two approaches, i.e., in both X-ray spectra and solar energetic particle (SEP) events. These represent two different electron populations, but may contain information of the same acceleration process. By studying a special group of late impulsive flares, and a group of selected SEP events, we found evidence of cutoffs revealed in both X-ray spectra and SEP electron distributions. In particular, we found for the first time consistent low- and high-energy cutoffs in both hard X-ray-producing and escaping electrons in two events. We also showed the importance of high-energy cutoff in studies of spectral shapes. These results provide evidence of cutoffs in flare-accelerated energetic electrons and new clues for constraining electron distribution parameters and particle acceleration models.

Loading...
Thumbnail Image
Item

On the Origin of Hard X-Ray Emissions from the Behind-the-limb Flare on 2014 September 1

2021, Wu, Yihong, Rouillard, Alexis P., Kouloumvakos, Athanasios, Vainio, Rami, Afanasiev, Alexandr N., Plotnikov, Illya, Murphy, Ronald J., Mann, Gottfried J., Warmuth, Alexander

The origin of hard X-rays and γ-rays emitted from the solar atmosphere during occulted solar flares is still debated. The hard X-ray emissions could come from flaring loop tops rising above the limb or coronal mass ejection shock waves, two by-products of energetic solar storms. For the shock scenario to work, accelerated particles must be released on magnetic field lines rooted on the visible disk and precipitate. We present a new Monte Carlo code that computes particle acceleration at shocks propagating along large coronal magnetic loops. A first implementation of the model is carried out for the 2014 September 1 event, and the modeled electron spectra are compared with those inferred from Fermi Gamma-ray Burst Monitor (GBM) measurements. When particle diffusion processes are invoked, our model can reproduce the hard electron spectra measured by GBM nearly 10 minutes after the estimated on-disk hard X-rays appear to have ceased from the flare site.