Search Results

Now showing 1 - 3 of 3
  • Item
    A climate network perspective on the intertropical convergence zone
    (Göttingen : Copernicus Publ., 2021) Wolf, Frederik; Voigt, Aiko; Donner, Reik V.
    The intertropical convergence zone (ITCZ) is an important component of the tropical rain belt. Climate models continue to struggle to adequately represent the ITCZ and differ substantially in its simulated response to climate change. Here we employ complex network approaches, which extract spatiotemporal variability patterns from climate data, to better understand differences in the dynamics of the ITCZ in state-of-the-art global circulation models (GCMs). For this purpose, we study simulations with 14 GCMs in an idealized slab-ocean aquaplanet setup from TRACMIP – the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project. We construct network representations based on the spatial correlation patterns of monthly surface temperature anomalies and study the zonal-mean patterns of different topological and spatial network characteristics. Specifically, we cluster the GCMs by means of the distributions of their zonal network measures utilizing hierarchical clustering. We find that in the control simulation, the distributions of the zonal network measures are able to pick up model differences in the tropical sea surface temperature (SST) contrast, the ITCZ position, and the strength of the Southern Hemisphere Hadley cell. Although we do not find evidence for consistent modifications in the network structure tracing the response of the ITCZ to global warming in the considered model ensemble, our analysis demonstrates that coherent variations of the global SST field are linked to ITCZ dynamics. This suggests that climate networks can provide a new perspective on ITCZ dynamics and model differences therein.
  • Item
    Future changes in extratropical storm tracks and baroclinicity under climate change
    (Bristol : IOP, 2014) Lehmann, J.; Coumou, D.; Frieler, K.; Eliseev, A.V.; Levermann, A.
    The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions.
  • Item
    Phase coherence between precipitation in South America and Rossby waves
    (Washington, DC [u.a.] : Assoc., 2018) Gelbrecht, Maximilian; Boers, Niklas; Kurths, Jürgen
    The dominant mode of intraseasonal precipitation variability during the South American monsoon is the so-called precipitation dipole between the South Atlantic convergence zone (SACZ) and southeastern South America (SESA). It affects highly populated areas that are of substantial importance for the regional food supplies. Previous studies using principal components analysis or complex networks were able to describe and characterize this variability pattern, but crucial questions regarding the responsible physical mechanism remain open. Here, we use phase synchronization techniques to study the relation between precipitation in the SACZ and SESA on the one hand and southern hemisphere Rossby wave trains on the other hand. In combination with a conceptual model, this approach demonstrates that the dipolar precipitation pattern is caused by the southern hemisphere Rossby waves. Our results thus show that Rossby waves are the main driver of the monsoon season variability in South America, a finding that has important implications for synoptic-scale weather forecasts.