Search Results

Now showing 1 - 2 of 2
  • Item
    Low Temperature Relaxation of Donor Bound Electron Spins in 28Si:P
    (College Park, Md. : APS, 2021) Sauter, E.; Abrosimov, N.V.; Hübner, J.; Oestreich, M.
    We measure the spin-lattice relaxation of donor bound electrons in ultrapure, isotopically enriched, phosphorus-doped 28Si:P. The optical pump-probe experiments reveal at low temperatures extremely long spin relaxation times which exceed 20 h. The 28Si:P spin relaxation rate increases linearly with temperature in the regime below 1 K and shows a distinct transition to a T9 dependence which dominates the spin relaxation between 2 and 4 K at low magnetic fields. The T7 dependence reported for natural silicon is absent. At high magnetic fields, the spin relaxation is dominated by the magnetic field dependent single phonon spin relaxation process. This process is well documented for natural silicon at finite temperatures but the 28Si:P measurements validate additionally that the bosonic phonon distribution leads at very low temperatures to a deviation from the linear temperature dependence of Γ as predicted by theory.
  • Item
    Exploring the intrinsic limit of the charge-carrier-induced increase of the Curie temperature of Lu- and La-doped EuO thin films
    (College Park, MD : APS, 2020) Held, R.; Mairoser, T.; Melville, A.; Mundy, J.A.; Holtz, M.E.; Hodash, D.; Wang, Z.; Heron, J.T.; Dacek, S.T.; Holländer, B.; Muller, D.A.; Schlom, D.G.
    Raising the Curie temperature TC of the highly spin-polarized semiconductor EuO by doping it with rare-earth elements is a strategy to make EuO more technologically relevant to spintronics. The increase of TC with free carrier density n and the surprisingly low dopant activation p, found in Gd-doped EuO thin films [Mairoser et al., Phys. Rev. Lett. 105, 257206 (2010)], raised the important question of whether TC could be considerably enhanced by increasing p. Using a low-temperature growth method for depositing high-quality Lu-doped EuO films we attain high dopant activation (p) values of up to 67%, effectively more than doubling p as compared to adsorption-controlled growth of Lu- and Gd-doped EuO. Relating n, p, and lattice compression of La- and Lu-doped EuO films grown at different temperatures to the TC of these samples allows us to identify several different mechanisms influencing TC and causing an experimental maximum in TC. In addition, scanning transmission electron microscopy in combination with electron energy loss spectroscopy measurements on La-doped EuO indicate that extensive dopant clustering is one, but not the sole reason for dopant deactivation in rare-earth doped EuO films.