Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

MUSE crowded field 3D spectroscopy in NGC 300 : I. First results from central fields

2018, Roth, Martin M., Sandin, Christer, Kamann, Sebastian, Husser, Tim-Oliver, Weilbacher, Peter M., Monreal-Ibero, Ana, Bacon, Roland, den Brok, Mark, Dreizler, Stefan, Kelz, Andreas, Marino, Raffaella Anna, Steinmetz, Matthias

Aims. As a new approach to the study of resolved stellar populations in nearby galaxies, our goal is to demonstrate with a pilot study in NGC 300 that integral field spectroscopy with high spatial resolution and excellent seeing conditions reaches an unprecedented depth in severely crowded fields. Methods. Observations by MUSE with seven pointings in NGC 300 have resulted in data cubes that are analyzed in four ways: (1) Point spread function-fitting 3D spectroscopy with PampelMUSE, as already successfully pioneered in globular clusters, yields de-blended spectra of individually distinguishable stars, thus providing a complete inventory of blue and red supergiants, and asymptotic giant branch (AGB) stars of type M and C. The technique is also applicable to emission line point sources and provides samples of planetary nebulae (PNe) that are complete down to m5007 = 28. (2) Pseudo-monochromatic images, created at the wavelengths of the most important emission lines and corrected for continuum light with the P3D visualization tool, provide maps of HâII regions, supernova remnants (SNR), and the diffuse interstellar medium (ISM) at a high level of sensitivity, where also faint point sources stand out and allow for the discovery of PNe, Wolf-Rayet (WR) stars, etc. (3) The use of the P3D line-fitting tool yields emission line fluxes, surface brightness, and kinematic information for gaseous objects, corrected for absorption line profiles of the underlying stellar population in the case of Hα. (4) Visual inspection of the data cubes by browsing through the row-stacked spectra image in P3D is demonstrated to be efficient for data mining and the discovery of background galaxies and unusual objects. Results. We present a catalog of luminous stars, rare stars such as WR, and other emission line stars, carbon stars, symbiotic star candidates, PNe, HâII regions, SNR, giant shells, peculiar diffuse and filamentary emission line objects, and background galaxies, along with their spectra. Conclusions. The technique of crowded-field 3D spectroscopy, using the PampelMUSE code, is capable of deblending individual bright stars, the unresolved background of faint stars, gaseous nebulae, and the diffuse component of the ISM, resulting in unprecedented legacy value for observations of nearby galaxies with MUSE.

Loading...
Thumbnail Image
Item

The Complex Behaviour of s-Process Element Abundances at Young Ages

2022, D’Orazi, Valentina, Baratella, Martina, Lugaro, Maria, Magrini, Laura, Pignatari, Marco

Open clusters appear as simple objects in many respects, with a high degree of homogeneity in their (initial) chemical composition, and the typical solar-scaled abundance pattern that they exhibit for the majority of the chemical species. The striking singularity is represented by heavy elements produced from the slow process of the neutron-capture reactions. In particular, young open clusters (ages less than a few hundred Myr) give rise to the so-called barium puzzle: that is an extreme enhancement in their [Be/Fe] ratios, up to a factor of four of the solar value, which is not followed by other nearby s-process elements (e.g., lanthanum and cerium). The definite explanation for such a peculiar trend is still wanting, as many different solutions have been envisaged. We review the status of this field and present our new results on young open clusters and the pre-main sequence star RZ Piscium.