Search Results

Now showing 1 - 2 of 2
  • Item
    Surface brightness-colour relations of dwarf stars from detached eclipsing binaries: I. Calibrating sample
    (Les Ulis : EDP Sciences, 2022) Graczyk, D.; Pietrzyński, G.; Galan, C.; Southworth, J.; Gieren, W.; Kałuszyński, M.; Zgirski, B.; Gallenne, A.; Górski, M.; Hajdu, G.; Karczmarek, P.; Kervella, P.; Maxted, P. F. L.; Nardetto, N.; Narloch, W.; Pilecki, B.; Pych, W.; Rojas Garcia, G.; Storm, J.; Suchomska, K.; Taormina, M.; Wielgórski, P.
    Aims. Surface brightness - colour relations (SBCRs) are very useful tools for predicting the angular diameters of stars. They offer the possibility to calculate very precise spectrophotometric distances by the eclipsing binary method or the Baade-Wesselink method. Double-lined Detached Eclipsing Binary stars (SB2 DEBs) with precisely known trigonometric parallaxes allow for a calibration of SBCRs with unprecedented precision. In order to improve such calibrations, it is important to enlarge the calibration sample of suitable eclipsing binaries with very precisely determined physical parameters. Methods. We carefully chose a sample of ten SB2 DEBs in the solar neighbourhood which contain inactive main-sequence components. The components have spectral types from early A to early K. All systems have high-precision parallaxes from the Gaia mission. We analysed high precision ground- and space-based photometry simultaneously with the radial velocity curves derived from HARPS spectra. We used spectral disentangling to obtain the individual spectra of the components and used these to derive precise atmospheric parameters and chemical abundances. For almost all components, we derived precise surface temperatures and metallicities. Results. We derived absolute dimensions for 20 stars with an average precision of 0.2% and 0.5% for masses and radii, respectively. Three systems show slow apsidal motion. One system, HD 32129, is most likely a triple system with a much fainter K6V companion. Also three systems contain metallic-line components and show strong enhancements of barium and ittrium. Conclusions. The components of all systems compare well to the SBCR derived before from the detached eclipsing binary stars. With a possible exception of HD 32129, they can be used to calibrate SBCRs with a precision better than 1% with available Gaia DR3 parallaxes.
  • Item
    Distance of Hi-GAL sources
    (Les Ulis : EDP Sciences, 2021) Mège, P.; Russeil, D.; Zavagno, A.; Elia, D.; Molinari, S.; Brunt, C.M.; Butora, R.; Cambresy, L.; Di Giorgio, A.M.; Fenouillet, T.; Fukui, Y.; Lambert, J.C.; Makai, Z.; Merello, M.; Meunier, J.C.; Molinaro, M.; Moreau, C.; Pezzuto, S.; Poulin, Y.; Schisano, E.; Schuller, F.
    Aims. Distances are key to determining the physical properties of sources. In the Galaxy, large (> 10 000) homogeneous samples of sources for which distance are available, covering the whole Galactic distance range, are still missing. Here we present a catalog of velocity and distance for a large sample (> 100 000) of Hi-GAL compact sources. Methods. We developed a fully automatic Python package to extract the velocity and determine the distance. To assign a velocity to a Hi-GAL compact source, the code uses all the available spectroscopic data complemented by a morphological analysis. Once the velocity is determined, if no stellar or maser parallax distance is known, the kinematic distance is calculated and the distance ambiguity (for sources located inside the Solar circle) is solved with the H I self-absorption method or from distance-extinction data. Results. Among the 150 223 compact sources of the Hi-GAL catalog, we obtained a distance for 124 069 sources for the 5σ catalog (and 128 351 sources for the 3σ catalog), where σ represents the noise level of each molecular spectrum used for the line detections made at 5σ and 3σ to produce the respective catalogs. © P. Mège et al. 2021.