Search Results

Now showing 1 - 3 of 3
  • Item
    The x-ray luminous galaxy cluster population at 0.9 < z ≲ 1.6 as revealed by the XMM-Newton Distant Cluster Project*
    (Bristol : IOP, 2011) Fassbender, R.; Böhringer, H.; Nastasi, A.; Šuhada, R.; Mühlegger, M.; De Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J.J.; Pierini, D.; Pratt, G.W.; Quintana, H.; Rosati, P.; Santos, J.S.; Schwope, A.D.
    We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 < z ≲ 1.6 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg 2 of noncontiguous deep archival XMM-Newton coverage, of which 49.4 deg 2 are part of the core survey with a quantifiable selection function and 17.7 deg 2 are classified as 'gold' coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ̃ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCPJ0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ≥ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M 200 ≃ 2×10 14 M ⊙, while the probed mass range for the distant clusters spans approximately (0.7-7)×10 14 M ⊙. The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm 12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1' from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to lowz systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass.
  • Item
    A Deep View into the Nucleus of the Sagittarius Dwarf Spheroidal Galaxy with MUSE. III. Discrete Multicomponent Population-dynamical Models Based on the Jeans Equations
    (London : Institute of Physics Publ., 2022) Kacharov, Nikolay; Alfaro-Cuello, Mayte; Neumayer, Nadine; Lützgendorf, Nora; Watkins, Laura L.; Mastrobuono-Battisti, Alessandra; Kamann, Sebastian; van de Ven, Glenn; Seth, Anil C.; Voggel, Karina T.; Georgiev, Iskren Y.; Leaman, Ryan; Bianchini, Paolo; Böker, Torsten; Mieske, Steffen
    We present comprehensive multicomponent dynamical models of M54 (NGC 6715), the nuclear star cluster of the Sagittarius (Sgr) dwarf galaxy, which is undergoing a tidal disruption in the Milky Way halo. Previous papers in this series used a large MUSE mosaic data set to identify multiple stellar populations in the system and study their kinematic differences. Here, we use Jeans-based dynamical models that fit the population properties (mean age and metallicity), spatial distributions, and kinematics simultaneously. They provide a solid physical explanation for our previous findings. Population-dynamical models deliver a comprehensive view of the whole system, and allow us to disentangle the different stellar populations. We explore their dynamical interplay and confirm our previous findings about the build-up of Sgr’s nuclear cluster via contributions from globular cluster stars, Sgr inner field stars, and in situ star formation. We explore various parameterizations of the gravitational potential and show the importance of a radially varying mass-to-light ratio for the proper treatment of the mass profile. We find a total dynamical mass within M54's tidal radius (∼75 pc) of 1.60 ± 0.07 × 106 M ⊙ in excellent agreement with N-body simulations. Metal-poor globular cluster stars contribute about 65% of the total mass or 1.04 ± 0.05 × 106 M ⊙. Metal-rich stars can be further divided into young and intermediate-age populations, which contribute 0.32 ± 0.02 × 106 M ⊙ (20%) and 0.24 ± 0.02 × 106 M ⊙ (15%), respectively. Our population-dynamical models successfully distinguish the different stellar populations in Sgr’s nucleus because of their different spatial distributions, ages, metallicities, and kinematic features.
  • Item
    Tracing Birth Properties of Stars with Abundance Clustering
    (London : Institute of Physics Publ., 2022) Ratcliffe, Bridget L.; Ness, Melissa K.; Buck, Tobias; Johnston, Kathryn V.; Sen, Bodhisattva; Beraldo e Silva, Leandro; Debattista, Victor P.
    To understand the formation and evolution of the Milky Way disk, we must connect its current properties to its past. We explore hydrodynamical cosmological simulations to investigate how the chemical abundances of stars might be linked to their origins. Using hierarchical clustering of abundance measurements in two Milky Way-like simulations with distributed and steady star formation histories, we find that groups of chemically similar stars comprise different groups in birth place (R birth) and time (age). Simulating observational abundance errors (0.05 dex), we find that to trace distinct groups of (R birth, age) requires a large vector of abundances. Using 15 element abundances (Fe, O, Mg, S, Si, C, P, Mn, Ne, Al, N, V, Ba, Cr, Co), up to ≈10 groups can be defined with ≈25% overlap in (R birth, age). We build a simple model to show that in the context of these simulations, it is possible to infer a star's age and R birth from abundances with precisions of ±0.06 Gyr and ±1.17 kpc, respectively. We find that abundance clustering is ineffective for a third simulation, where low-α stars form distributed in the disk and early high-α stars form more rapidly in clumps that sink toward the Galactic center as their constituent stars evolve to enrich the interstellar medium. However, this formation path leads to large age dispersions across the [α/Fe]-[Fe/H] plane, which is inconsistent with the Milky Way's observed properties. We conclude that abundance clustering is a promising approach toward charting the history of our Galaxy.