Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites

2013, Song, K.K., Pauly, S., Sun, B.A, Tan, J., Stoica, M., Kühn, U., Eckert, J.

The variation of the transformation-mediated deformation behavior with microstructural changes in CuZr-based bulk metallic glass composites is investigated. With increasing crystalline volume fraction, the deformation mechanism gradually changes from a shear-banding dominated process as evidenced by a chaotic serrated flow behavior, to being governed by a martensitic transformation with a pronounced elastic-plastic stage, resulting in different plastic deformations evolving into a self-organized critical state characterized by the power-law distribution of shear avalanches. This is reflected in the stress-strain curves by a single-to-"double"-to-"triple"- double yielding transition and by different mechanical properties with different serrated flow characteristics, which are interpreted based on the microstructural evolutions and a fundamental energy theorem. Our results can assist in understanding deformation behaviors for high-performance metastable alloys.

Loading...
Thumbnail Image
Item

Large superplastic strain in non-modulated epitaxial Ni-Mn-Ga films

2010, Yeduru, S.R., Backen, A., Fahler, S., Schultz, L., Kohl, M.

The phase transformation and superplastic characteristics of free-standing epitaxial Ni-Mn-Ga stripes are reported. The stripes are prepared by micromachining a 1 μm thick Ni-Mn-Ga film sputter-deposited on a single crystalline MgO (100) substrate using optical lithography and a Chromium-based sacrificial layer technology. The stripes are oriented at angles of 0 and 45 degrees with respect to the Ni-Mn-Ga unit cell. Electrical resistance versus temperature characteristics reveal a reversible thermally induced phase transformation between 169°C and 191°C. Stress-strain measurements are performed with the stress applied along the [100]Ni-Mn-Ga as well as [110]Ni-Mn-Ga direction. Depending on the orientation, the twinning stress ranges between 25 and 30 MPa, respectively. For the [100] Ni-Mn-Ga and [110]Ni-Mn-Ga directions, superplastic behaviour with a strain plateau of 12 % and 4% are observed, respectively, indicating stress-induced reorientation of non-modulated martensite variants.