Search Results

Now showing 1 - 6 of 6
  • Item
    Photoelectron holography in strong optical and dc electric fields
    (Bristol : Institute of Physics Publishing, 2014) Stodolna, A.; Huismans, Y.; Rouzée, A.; Lépine, F.; Vrakking, M.J.J.
    The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.
  • Item
    General Time-Dependent Configuration-Interaction Singles I: The Molecular Case
    (Woodbury, NY : Inst., 2022-10-10) Carlström, Stefanos; Spanner, Michael; Patchkovskii, Serguei
    We present a grid-based implementation of the time-dependent configuration-interaction singles method suitable for computing the strong-field ionization of small gas-phase molecules. After outlining the general equations of motion used in our treatment of this method, we present example calculations of strong-field ionization of He, LiH, H2O, and C2H4 that demonstrate the utility of our implementation. The following paper [S. Carlström et al., following paper, Phys. Rev. A 106, 042806 (2022)] specializes to the case of spherical symmetry, which is applied to various atoms.
  • Item
    Strong field ionization of small hydrocarbon chains with full 3D momentum analysis
    (Bristol : IOP Publ., 2015) Schulz, Claus Peter; Birkner, Sascha; Furch, Federico J.; Anderson, Alexandria; Mikosch, Jochen; Schell, Felix; Vrakking, Marc J. J.
    Strong field ionization of small hydrocarbon chains is studied in a kinematic complete experiment using a reaction microscope. By coincidence detection of ions and electrons different ionization continua populated during the ionization process are identified. In addition, photoelectron momentum distributions from laser-aligned molecules allow to characterize the electron wavepackets emerging from different Dyson orbitals.
  • Item
    The role of the Kramers-Henneberger atom in the higher-order Kerr effect
    (Bristol : IOP, 2013) Richter, M.; Patchkovskii, S.; Morales, F.; Smirnova, O.; Ivanov, M.
    We discuss the connection between strong-field ionization, saturation of the Kerr response and the formation of the Kramers-Henneberger (KH) atom and long-living excitations in intense infrared (IR) external fields. We present a generalized model for the intensity-dependent response of atoms in strong IR laser fields, describing deviations in the nonlinear response at the frequency of the driving field from the standard model. We show that shaping the driving laser pulse allows one to reveal signatures of the excited KH states in the Kerr response of an individual atom.
  • Item
    Electron dynamics in laser-driven atoms near the continuum threshold
    (Washington, DC : OSA, 2021) Liu, Mingqing; Xu, Songpo; Hu, Shilin; Becker, Wilhelm; Quan, Wei; Liu, Xiaojun; Chen, Jing
    Strong-field ionization and Rydberg-state excitation (RSE) near the continuum threshold exhibit two phenomena that have attracted a lot of recent attention: the low-energy structure (LES) just above and frustrated tunneling ionization just below the threshold. The former becomes apparent for longer laser wavelengths, while the latter has been especially investigated in the near infrared; both have been treated as separate phenomena so far. Here we present a unified perspective based on electron trajectories, which emphasizes the very important role of the electron-ion Coulomb interaction as expected in this energy region. Namely, those trajectories that generate the LES can also be recaptured into a Rydberg state. The coherent superposition of the contributions of such trajectories with different travel times (each generating one of the various LES peaks) causes an oscillation in the intensity dependence of the RSE yield, which is especially noticeable for longer wavelengths. The theory is illustrated by RSE experiments at 1800 nm, which agree very well with the theory with respect to position and period of the oscillation. The wavelength scaling of the RSE oscillation is also discussed. Our work establishes a solid relationship between processes below and above the threshold and sheds new light on atomic dynamics driven by intense laser fields in this critical energy region.
  • Item
    Nondipole effects in terahetz-pulse-assisted strong-field ionization
    (Washington, DC : Soc., 2022) Milošević, Dejan B.; Habibović, Dino
    Nondipole effects in processes assisted by a THz field having the strength of a few MV/cm can be significant due to its long wavelength. We illustrate this for strong-laser-field-induced ionization assisted by a THz field. To this end, we generalize our strong-field-approximation theory so that it includes the first-order term in a 1/c expansion of the vector potential. We show that in this case, in addition to a shift of the maximum of the photoelectron momentum distribution, the differential ionization probability as well as the cutoff energy can be significantly increased. For an explanation of these unexpected results we use the saddle-point method adjusted to include nondipole effects.