Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)

2020, Levermann, Anders, Winkelmann, Ricarda, Albrecht, Torsten, Goelzer, Heiko, Golledge, Nicholas R., Greve, Ralf, Huybrechts, Philippe, Jordan, Jim, Leguy, Gunter, Martin, Daniel, Morlighem, Mathieu, Pattyn, Frank, Pollard, David, Quiquet, Aurelien, Rodehacke, Christian, Seroussi, Helene, Sutter, Johannes, Zhang, Tong, Van Breedam, Jonas, Calov, Reinhard, DeConto, Robert, Dumas, Christophe, Garbe, Julius, Gudmundsson, G. Hilmar, Hoffman, Matthew J., Humbert, Angelika, Kleiner, Thomas, Lipscomb, William H., Meinshausen, Malte, Ng, Esmond, Nowicki, Sophie M.J., Perego, Mauro, Price, Stephen F., Saito, Fuyuki, Schlegel, Nicole-Jeanne, Sun, Sainan, van de Wal, Roderik S.W.

The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain the ice flow response to the individual global warming path. The model median for the observational period from 1992 to 2017 of the ice loss due to basal ice shelf melting is 10.2 mm, with a likely range between 5.2 and 21.3 mm. For the same period the Antarctic ice sheet lost mass equivalent to 7.4mm of global sea level rise, with a standard deviation of 3.7mm (Shepherd et al., 2018) including all processes, especially surface-mass-balance changes. For the unabated warming path, Representative Concentration Pathway 8.5 (RCP8.5), we obtain a median contribution of the Antarctic ice sheet to global mean sea level rise from basal ice shelf melting within the 21st century of 17 cm, with a likely range (66th percentile around the mean) between 9 and 36 cm and a very likely range (90th percentile around the mean) between 6 and 58 cm. For the RCP2.6 warming path, which will keep the global mean temperature below 2 °C of global warming and is thus consistent with the Paris Climate Agreement, the procedure yields a median of 13 cm of global mean sea level contribution. The likely range for the RCP2.6 scenario is between 7 and 24 cm, and the very likely range is between 4 and 37 cm. The structural uncertainties in the method do not allow for an interpretation of any higher uncertainty percentiles.We provide projections for the five Antarctic regions and for each model and each scenario separately. The rate of sea level contribution is highest under the RCP8.5 scenario. The maximum within the 21st century of the median value is 4 cm per decade, with a likely range between 2 and 9 cm per decade and a very likely range between 1 and 14 cm per decade. © Author(s) 2020.

Loading...
Thumbnail Image
Item

Disentangling diverse responses to climate change among global marine ecosystem models

2021, Heneghan, Ryan F., Galbraith, Eric, Blanchard, Julia L., Harrison, Cheryl, Barrier, Nicolas, Bulman, Catherine, Cheung, William, Coll, Marta, Eddy, Tyler D., Erauskin-Extramiana, Maite, Everett, Jason D., Fernandes-Salvador, Jose A., Gascuel, Didier, Guiet, Jerome, Maury, Olivier, Palacios-Abrantes, Juliano, Petrik, Colleen M., du Pontavice, Hubert, Richardson, Anthony J., Steenbeek, Jeroen, Tai, Travis C., Volkholz, Jan, Woodworth-Jefcoats, Phoebe A., Tittensor, Derek P.

Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models’ drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts.