Search Results

Now showing 1 - 2 of 2
  • Item
    Oligoglycidol-functionalised styrene macromolecules as reactive surfactants in the emulsion polymerisation of styrene: The impact of chain length and concentration on particle size and colloidal stability
    (Basel : MDPI AG, 2020) Waulthers, Kim; van Zandvoort, Ryan; Castermans, Sam; Welzen, Jeroen; Baeten, Evelien; Stout, Kathleen; Keul, Helmut; Mann, Daniel; Buskens, Pascal
    Reactive surfactants (surfmers), which are covalently attached to the surface of sub-micron sized polymer particles during emulsion polymerisation, are applied to tailor the surface functionality of polymer particles for an application of choice. We present a systematic study on the use of oligoglycidol-functionalised styrene macromolecules as surfmers in the emulsion polymerization of styrene. Firstly, we report the impact of the surfmer concentration on the particle size for polymerisations performed above and below the critical micelle concentration. Secondly, we report the influence of the oligoglycidol chain length on the particle size. Thirdly, we conducted experiments to analyse the influence of the surfmer concentration and its chain length on the colloidal stability of the aqueous polystyrene nanoparticles in sodium chloride solutions. We demonstrated that the size of polystyrene particles could be influenced by changing both the surfmer concentration and its chain length. Furthermore, we showed that the colloidal stability of the oligoglycidol-functionalized polystyrene particles is dependent on the particle size, and not directly related to the oligoglycidol chain length. © 2020 by the authors.
  • Item
    Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field
    (London : Royal Soc. of Chemistry, 2016) Kathrein, Christine C.; Pester, Christian; Ruppel, Markus; Jung, Maike; Zimmermann, Marc; Böker, Alexander
    Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order–disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electric-field-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures.