Search Results

Now showing 1 - 2 of 2
  • Item
    Verification of the helioseismic Fourier-Legendre analysis for meridional flow measurements
    (Les Ulis : EDP Sciences, 2016) Roth, M.; Doerr, H.-P.; Hartlep, T.
    Context. Measuring the Sun’s internal meridional flow is one of the key issues of helioseismology. Using the Fourier-Legendre analysis is a technique for addressing this problem. Aims. We validate this technique with the help of artificial helioseismic data. Methods. The analysed data set was obtained by numerically simulating the effect of the meridional flow on the seismic wave field in the full volume of the Sun. In this way, a 51.2-h long time series was generated. The resulting surface velocity field is then analyzed in various settings: Two 360° × 90° halfspheres, two 120° × 60° patches on the front and farside of the Sun (North and South, respectively) and two 120° × 60° patches on the northern and southern frontside only. We compare two possible measurement setups: observations from Earth and from an additional spacecraft on the solar farside, and observations from Earth only, in which case the full information of the global solar oscillation wave field was available. Results. We find that, with decreasing observing area, the accessible depth range decreases: the 360° × 90° view allows us to probe the meridional flow almost to the bottom of the convection zone, while the 120° × 60° view means only the outer layers can be probed. Conclusions. These results confirm the validity of the Fourier-Legendre analysis technique for helioseismology of the meridional flow. Furthermore these flows are of special interest for missions like Solar Orbiter that promises to complement standard helioseismic measurements from the solar nearside with farside observations.
  • Item
    Cycle dependence of a quasi-biennial variability in the solar interior
    (Oxford : Oxford Univ. Press, 2022) Mehta, T.; Jain, K.; Tripathy, S.C.; Kiefer, R.; Kolotkov, D.; Broomhall, A.-M.
    We investigated the solar cycle dependence on the presence and periodicity of the Quasi-Biennial Oscillation (QBO). Using helioseismic techniques, we used solar oscillation frequencies from the Global Oscillations Network Group (GONG), Michelson Doppler Imager (MDI), and Helioseismic and Magnetic Imager (HMI) in the intermediate-degree range to investigate the frequency shifts over Cycles 23 and 24. We also examined two solar activity proxies, the F10.7 index and the Mg ii index, for the last four solar cycles to study the associated QBO. The analyses were performed using Empirical Mode Decomposition (EMD) and the Fast Fourier Transform (FFT). We found that the EMD analysis method is susceptible to detecting statistically significant Intrinsic Mode Functions (IMFs) with periodicities that are overtones of the length of the data set under examination. Statistically significant periodicities, which were not due to overtones, were detected in the QBO range. We see a reduced presence of the QBO in Cycle 24 compared to Cycle 23. The presence of the QBO was not sensitive to the depth to which the p-mode travelled, nor the average frequency of the p-mode. The analysis further suggested that the magnetic field responsible for producing the QBO in frequency shifts of p-modes is anchored above approximately 0.95 R⊙.