Search Results

Now showing 1 - 3 of 3
  • Item
    Compact SAW aerosol generator
    (Heidelberg : Springer, 2017) Winkler, A.; Harazim, S.; Collins, D.J.; Brünig, R.; Schmidt, H.; Menzel, S.B.
    In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present comprehensive experimental results exploring the complexity of the acoustic atomization process and the influence of fluid supply position and geometry, SAW power and fluid flow rate on the device functionality. These factors in turn influence the droplet size distribution, measured here, that is important for applications including liquid chromatography, pulmonary therapies, thin film deposition and olfactory displays.
  • Item
    Acoustic resonance effects and cavitation in SAW aerosol generation
    (Amsterdam [u.a.] : Elsevier, 2023) Roudini, Mehrzad; Manuel Rosselló, Juan; Manor, Ofer; Ohl, Claus-Dieter; Winkler, Andreas
    The interaction of surface acoustic waves (SAWs) with liquids enables the production of aerosols with adjustable droplet sizes in the micrometer range expelled from a very compact source. Understanding the nonlinear acousto-hydrodynamics of SAWs with a regulated micro-scale liquid film is essential for acousto-microfluidics platforms, particularly aerosol generators. In this study, we demonstrate the presence of micro-cavitation in a MHz-frequency SAW aerosol generation platform, which is touted as a leap in aerosol technology with versatile application fields including biomolecule inhalation therapy, micro-chromatography and spectroscopy, olfactory displays, and material deposition. Using analysis methods with high temporal and spatial resolution, we demonstrate that SAWs stabilize spatially arranged liquid micro-domes atop the generator's surface. Our experiments show that these liquid domes become acoustic resonators with highly fluctuating pressure amplitudes that can even nucleate cavitation bubbles, as supported by analytical modeling. The observed fragmentation of liquid domes indicates the participation of three droplet generation mechanisms, including cavitation and capillary-wave instabilities. During aerosol generation, the cavitation bubbles contribute to the ejection of droplets from the liquid domes and also explain observed microstructural damage patterns on the chip surface eventually caused by cavitation-based erosion.
  • Item
    New electronic device for driving surface acoustic wave actuators
    (Amsterdam : Elsevier, 2009) Brünig, R.; Mensel, K.; Kunze, R.; Schmidt, H.
    Surface acoustic wave (SAW) actuators are driven by a high frequency signal. The frequency range for an ideal SAW-generation is usually very narrow banded and may shift depending on various environmental conditions. We present a new electronic device which self-aligns to the optimal excitation frequency within a wide range. Any kind of SAW-actuator can be used. The device continuously scans a certain frequency range and characterizes the SAW-component. The ideal excitation frequency is then determined and used to drive the SAW-device. In case of changes like loading conditions or temperature variations the device automatically readjusts to the optimal frequency and prevents possible damage of the device or actuator in case of an error. © 2009.