Search Results

Now showing 1 - 2 of 2
  • Item
    Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells
    (Basel : MDPI AG, 2019) Lerra, L.; Farfalla, A.; Sanz, B.; Cirillo, G.; Vittorio, O.; Voli, F.; Grand, M.L.; Curcio, M.; Nicoletta, F.P.; Dubrovska, A.; Hampel, S.; Iemma, F.; Goya, G.F.
    With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
  • Item
    Tribocorrosion behavior of β-type Ti-Nb-Ga alloys in a physiological solution
    (Amsterdam [u.a.] : Elsevier Science, 2023) Alberta, Ludovico Andrea; Vishnu, Jithin; Douest, Yohan; Perrin, Kevin; Trunfio-Sfarghiu, Ana-Maria; Courtois, Nicolas; Gebert, Annett; Ter-Ovanessian, Benoit; Calin, Mariana
    Tribo-electrochemical behavior in physiological solution of two β-type (100-x)(Ti-45Nb)-xGa (x = 4, 8 wt%) alloys, alongside β-Ti-45Nb and medical grade Ti-6Al-4V ELI, was investigated. Microstructure and mechanical behavior were evaluated by X-ray diffraction, microhardness and ultrasonic method. Tribocorrosion tests (open circuit potential, anodic potentiostatic tests) were performed using a reciprocating pin-on-disk tribometer under constant load. Degradation mechanisms are similar for the alloys: plastic deformation, delamination, abrasive and adhesive wear. Among the β-Ti-Nb alloys, an improved wear resistance with lower damage was remarked for β-92(Ti-45Nb)-8Ga alloy, attributed to increased microhardness. Content of Ga3+ ions released in the test solutions were found to be in very low amounts (few ppb). Addition of Ga to Ti-45Nb resulted in improved corrosion resistance under mechanical loading.