Search Results

Now showing 1 - 2 of 2
  • Item
    Air-Stable CpCoI–Phosphite–Fumarate Precatalyst in Cyclization Reactions: Comparing Different Methods of Energy Supply
    (Weinheim : Wiley-VCH Verl., 2018) Fischer, Fabian; Hapke, Marko
    The robust CoI precatalyst [CpCo(P{OEt}3)(trans-MeO2CHC=CHCO2Me)] was investigated in cyclotrimerizations, furnishing benzenes and pyridines from triynes, diynes and nitriles, comparing the influence of different ways of energy supply; namely, irradiation and conventional (thermal) or microwave heating. The precatalyst was found to work under all conditions, including the possibility to catalyze cyclotrimerizations at room temperature under photochemical conditions at longer reaction times. Performance of the reactions in a microwave reactor proved to be the most time-efficient way to rapidly assemble the expected reaction products; however, careful selection of reaction conditions can be required. The synthesis of pyridines and isoquinolines successfully involved the utilization of versatile functionalized nitriles, affording structurally interesting reaction products. Comparison with the known and often applied precatalyst CpCo(CO)2 demonstrated the significantly higher reactivity of the CpCoI–phosphite–olefin precatalyst.
  • Item
    Hexacyanidosilicates with Functionalized Imidazolium Counterions
    (Weinheim : Wiley-VCH, 2020) Harloff, Jörg; Laatz, Karoline Charlotte; Lerch, Swantje; Schulz, Axel; Stoer, Philip; Strassner, Thomas; Villinger, Alexander
    Functionalized imidazolium cations were combined with the hexacyanidosilicate anion, [Si(CN)6]2–, by salt metathesis reactions with K2[Si(CN)6], yielding novel ionic compounds of the general formula [R–Ph(nBu)Im]2[Si(CN)6] {R = 2-Me (1), 4-Me (2), 2,4,6-Me = Mes (3), 2-MeO (4), 2,4-F (5), 4-Br (6); Im = imidazolium}. All synthesized imidazolium hexacyanidosilicates decompose upon thermal treatment above 95 °C (96 – 164 °C). Furthermore, the hexa-borane-adduct [Mes(nBu)Im]2{Si[(CN)B(C6F5)3]6}·6CH2Cl2 (7), which is thermally stable up to 215 °C, was obtained from the reaction of 3 with Lewis acidic B(C6F5)3. In CH3CN solution, decomposition of the hexaadduct to the Lewis-acid-base adduct CH3CN–B(C6F5)3 and [(C6F5)3B·(µ-CN)·B(C6F5)3]– was observed. All synthesized compounds were isolated in good yields and were completely characterized including single crystal structure elucidations. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.