Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes

2022, Pylaeva, Ekaterina, Korschunow, Georg, Spyra, Ilona, Bordbari, Sharareh, Siakaeva, Elena, Ozel, Irem, Domnich, Maksim, Squire, Anthony, Hasenberg, Anja, Thangavelu, Kruthika, Hussain, Timon, Goetz, Moritz, Lang, Karl S, Gunzer, Matthias, Hansen, Wiebke, Buer, Jan, Bankfalvi, Agnes, Lang, Stephan, Jablonska, Jadwiga

Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.

Loading...
Thumbnail Image
Item

Raman spectroscopy follows time-dependent changes in T lymphocytes isolated from spleen of endotoxemic mice

2019, Ramoji, Anuradha, Ryabchykov, Oleg, Galler, Kerstin, Tannert, Astrid, Markwart, Robby, Requardt, Robert Pascal, Rubio, Ignacio, Bauer, Michael, Bocklitz, Thomas W., Popp, Jürgen, Neugebauer, Ute

T lymphocytes (T cells) are highly specialized members of the adaptive immune system and hold the key to the understanding the hosts’ response toward invading pathogen or pathogen-associated molecular patterns such as LPS. In this study, noninvasive Raman spectroscopy is presented as a label-free method to follow LPS-induced changes in splenic T cells during acute and postacute inflammatory phases (1, 4, 10, and 30 d) with a special focus on CD4+ and CD8+ T cells of endotoxemic C57BL/6 mice. Raman spectral analysis reveals highest chemical differences between CD4+ and CD8+ T cells originating from the control and LPS-treated mice during acute inflammation, and the differences are visible up to 10 d after the LPS insult. In the postacute phase, CD4+ and CD8+ T cells from treated and untreated mice could not be differentiated anymore, suggesting that T cells largely regained their original status. In sum, the biological information obtained from Raman spectra agrees with immunological readouts demonstrating that Raman spectroscopy is a well-suited, label-free method for following splenic T cell activation in systemic inflammation from acute to postacute phases. The method can also be applied to directly study tissue sections as is demonstrated for spleen tissue one day after LPS insult.T lymphocytes (T cells) are highly specialized members of the adaptive immune system and hold the key to the understanding the hosts’ response toward invading pathogen or pathogen-associated molecular patterns such as LPS. In this study, noninvasive Raman spectroscopy is presented as a label-free method to follow LPS-induced changes in splenic T cells during acute and postacute inflammatory phases (1, 4, 10, and 30 d) with a special focus on CD4+ and CD8+ T cells of endotoxemic C57BL/6 mice. Raman spectral analysis reveals highest chemical differences between CD4+ and CD8+ T cells originating from the control and LPS-treated mice during acute inflammation, and the differences are visible up to 10 d after the LPS insult. In the postacute phase, CD4+ and CD8+ T cells from treated and untreated mice could not be differentiated anymore, suggesting that T cells largely regained their original status. In sum, the biological information obtained from Raman spectra agrees with immunological readouts demonstrating that Raman spectroscopy is a well-suited, label-free method for following splenic T cell activation in systemic inflammation from acute to postacute phases. The method can also be applied to directly study tissue sections as is demonstrated for spleen tissue one day after LPS insult.