Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

High-temperature high-sensitivity AlN-on-SOI Lamb wave resonant strain sensor

2018, Dou, Shaoxu, Qi, Mengke, Chen, Cong, Zhou, Hong, Wang, Yong, Shang, Zhengguo, Yang, Jing, Wang, Dengpan, Mu, Xiaojing

A piezoelectric AlN-on-SOI structured MEMS Lamb wave resonator (LWR) is presented for high-temperature strain measurement. The LWR has a composite membrane of a 1 μm thick AlN film and a 30 μm thick device silicon layer. The excited acoustic waves include Rayleigh wave and Lamb waves. A tensile strain sensor has been prepared with one LWR mounted on a uniaxial tensile plate, and its temperature characteristics from 15.4°C to 250°C and tensile strain behaviors from 0 μϵ to 400 μϵ of Rayleigh wave and S4 mode Lamb wave were tested. The temperature test verifies the adaptability of the tensile strain sensor to temperature up to 250°C, and S4 mode Lamb wave and Rayleigh wave represent almost the same temperature characteristics. The strain test demonstrates that S4 mode Lamb wave shows much higher strain sensitivity (-0.48 ppm/μϵ) than Rayleigh wave (0.05 ppm/μϵ) and confirms its advantage of strain sensitivity. Finally, for this one-LWR strain sensor, a method of beat frequency between S4 mode Lamb wave and Rayleigh wave is proposed for temperature compensation and high-sensitivity strain readout.

Loading...
Thumbnail Image
Item

Large superplastic strain in non-modulated epitaxial Ni-Mn-Ga films

2010, Yeduru, S.R., Backen, A., Fahler, S., Schultz, L., Kohl, M.

The phase transformation and superplastic characteristics of free-standing epitaxial Ni-Mn-Ga stripes are reported. The stripes are prepared by micromachining a 1 μm thick Ni-Mn-Ga film sputter-deposited on a single crystalline MgO (100) substrate using optical lithography and a Chromium-based sacrificial layer technology. The stripes are oriented at angles of 0 and 45 degrees with respect to the Ni-Mn-Ga unit cell. Electrical resistance versus temperature characteristics reveal a reversible thermally induced phase transformation between 169°C and 191°C. Stress-strain measurements are performed with the stress applied along the [100]Ni-Mn-Ga as well as [110]Ni-Mn-Ga direction. Depending on the orientation, the twinning stress ranges between 25 and 30 MPa, respectively. For the [100] Ni-Mn-Ga and [110]Ni-Mn-Ga directions, superplastic behaviour with a strain plateau of 12 % and 4% are observed, respectively, indicating stress-induced reorientation of non-modulated martensite variants.