Search Results

Now showing 1 - 3 of 3
  • Item
    Surface, interphase and tensile properties of unsized, sized and heat treated basalt fibres
    (London [u.a.] : Institute of Physics, 2016) Förster, T.; Sommer, G.S.; Mäder, E.; Scheffler, C.
    Recycling of fibre reinforced polymers is in the focus of several investigations. Chemical and thermal treatments of composites are the common ways to separate the reinforcing fibres from the polymer matrices. However, most sizings on glass and basalt fibre are not designed to resist high temperatures. Hence, a heat treatment might also lead to a sizing removal, a decrease of mechanical performance and deterioration in fibre-matrix adhesion. Different basalt fibres were investigated using surface analysis methods as well as single fibre tensile tests and single fibre pull-out tests in order to reveal the possible causes of these issues. Heat treatment in air reduced the fibre tensile strength in the same level like heat treatment in nitrogen atmosphere, but it influenced the wetting capability. Re-sizing by a coupling agent slightly increased the adhesion strength and reflected a decreased post-debonding friction.
  • Item
    Polymeric Membranes With Sufficient Thermo‐Mechanical Stability to Deploy Temperature Enhanced Backwash
    (Weinheim : Wiley-VCH, 2021) Aumeier, Benedikt M.; Vollmer, Fabian; Lenfers, Simon; Yüce, Süleyman; Wessling, Matthias
    The alternative membrane cleaning method Temperature Enhanced Backwash exploits elevated temperatures of typically 125 °C to realize high shear rate. This exceeds usual operating temperatures by far. Therefore, the thermo-mechanical properties of polymeric membranes were investigated. A repeated load cycle testing was suited and sensitive to detect the failure of membrane material and potting. All tested PES membranes showed to be stable during the repeated load cycle testing. The potting adhesive may be decisive, thus, a tensile test at 125 °C is proposed. © 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH
  • Item
    The Tensile Behaviour of Highly Filled High-Density Polyethylene Quaternary Composites: Weld-Line Effects, DIC Curiosities and Shifted Deformation Mechanisms
    (Basel : MDPI, 2021) Viljoen, David; Fischer, Matthieu; Kühnert, Ines; Labuschagné, Johan
    The interactive effects between additives and weld lines, which are frequent injection-moulding defects, were studied in high-density polyethylene (HDPE) and compared to weld-line-free reference samples. These materials were formulated around a D- and I-optimal experimental design, based on a quadratic Scheffé polynomial model, with up to 60 wt% calcium carbonate, masterbatched carbon black and a stabiliser package. Where reasonable and appropriate, the behaviours of the systems were modelled using statistical techniques, for a better understanding of the underlying trends. The characterisations were performed through the use of conventional tensile testing, digital image correlation (DIC) and scanning electron microscopy (SEM). A range of complex interactive effects were found during conventional tensile testing, with DIC used to better understand and explain these effects. SEM is used to better understand the failure mechanics of some of these systems through fractography, particularly regarding particle effects. A measure is introduced to quantify the deviation of the pre-yield deformation curve from the ideal elastic case. Novel analysis of DIC results is proposed, through the use of combined time-series plots and measures quantifying the extent and localisation of peak deformation. Through this, it could be found that strong shifts in the deformation mechanisms occur as a function of formulation and the presence/absence of weld lines. Primarily, changes are noted in the onset of continuous inter- and intralamellar slip and cavitation/fibrillation, seen through the onset of localised deformation and stress-whitening.