Search Results

Now showing 1 - 5 of 5
  • Item
    Inter-granular effects at high magnetic fields of cuprate and iron chalcogenide superconducting materials
    (Bristol : Institute of Physics Publishing, 2019) Buchkov, K.; Valkovski, M.; Gajda, D.; Nenkov, K.; Nazarova, E.
    The weak links effects are one of the main challenges for effective power applications of high temperature superconducting materials. Studies of these effects help for their better understanding and subsequent improvement. An overview analysis of the intergranular properties of cuprate (Y0.8Ca0.2Ba2Cu3O7-δ) and iron-based chalcogenide (FeSe0.5Te0.5) polycrystalline samples was carried out, by means of series of electro-transport experiments at different magnetic fields. The temperature evolution of the Josephson coupling and intrinsic superconductivity effects for the both systems was constructed. The FeSe0.5Te0.5 compound shows very stable and superior behavior compared to Y0.8Ca0.2BCO up to the highest magnetic fields (14T) used. We have explored FeSe0.5Te0.5 Josephson weak links influence (as a non-linear process) over the resistive transition using different AC current amplitudes and applying the sensitive AC transport third harmonics technique.
  • Item
    Holographic vector field electron tomography of three-dimensional nanomagnets
    (London : Nature Publishing Group, 2019) Wolf, D.; Biziere, N.; Sturm, S.; Reyes, D.; Wade, T.; Niermann, T.; Krehl, J.; Warot-Fonrose, B.; Büchner, B.; Snoeck, E.; Gatel, C.; Lubk, A.
    Complex 3D magnetic textures in nanomagnets exhibit rich physical properties, e.g., in their dynamic interaction with external fields and currents, and play an increasing role for current technological challenges such as energy-efficient memory devices. To study these magnetic nanostructures including their dependency on geometry, composition, and crystallinity, a 3D characterization of the magnetic field with nanometer spatial resolution is indispensable. Here we show how holographic vector field electron tomography can reconstruct all three components of magnetic induction as well as the electrostatic potential of a Co/Cu nanowire with sub 10 nm spatial resolution. We address the workflow from acquisition, via image alignment to holographic and tomographic reconstruction. Combining the obtained tomographic data with micromagnetic considerations, we derive local key magnetic characteristics, such as magnetization current or exchange stiffness, and demonstrate how magnetization configurations, such as vortex states in the Co-disks, depend on small structural variations of the as-grown nanowire.
  • Item
    Magnetization-driven Lifshitz transition and charge-spin coupling in the kagome metal YMn6Sn6
    (London : Springer Nature, 2022) Siegfried, Peter E.; Bhandari, Hari; Jones, David C.; Ghimire, Madhav P.; Dally, Rebecca L.; Poudel, Lekh; Bleuel, Markus; Lynn, Jeffrey W.; Mazin, Igor I.; Ghimire, Nirmal J.
    The Fermi surface (FS) is essential for understanding the properties of metals. It can change under both conventional symmetry-breaking phase transitions and Lifshitz transitions (LTs), where the FS, but not the crystal symmetry, changes abruptly. Magnetic phase transitions involving uniformly rotating spin textures are conventional in nature, requiring strong spin-orbit coupling (SOC) to influence the FS topology and generate measurable properties. LTs driven by a continuously varying magnetization are rarely discussed. Here we present two such manifestations in the magnetotransport of the kagome magnet YMn6Sn6: one caused by changes in the magnetic structure and another by a magnetization-driven LT. The former yields a 10% magnetoresistance enhancement without a strong SOC, while the latter a 45% reduction in the resistivity. These phenomena offer a unique view into the interplay of magnetism and electronic topology, and for understanding the rare-earth counterparts, such as TbMn6Sn6, recently shown to harbor correlated topological physics.
  • Item
    Magnetically induced reorientation of martensite variants in constrained epitaxial Ni-Mn-Ga films grown on MgO(001)
    (Milton Park : Taylor & Francis, 2008) Thomas, M.; Heczko, O.; Buschbeck, J.; Rößler, U.K.; McCord, J.; Scheerbaum, N.; Schultz, L.; Fähler, S.
    Magnetically induced reorientation (MIR) is observed in epitaxial orthorhombic Ni-Mn-Ga films. Ni-Mn-Ga films have been grown epitaxially on heated MgO(001) substrates in the cubic austenite state. The unit cell is rotated by 45° relative to the MgO cell. The growth, structure texture and anisotropic magnetic properties of these films are described. The crystallographic analysis of the martensitic transition reveals variant selection dominated by the substrate constraint. The austenite state has low magnetocrystalline anisotropy. In the martensitic state, the magnetization curves reveal an orthorhombic symmetry having three magnetically non-equivalent axes. The existence of MIR is deduced from the typical hysteresis within the first quadrant in magnetization curves and independently by texture measurement without and in the presence of a magnetic field probing micro structural changes. An analytical model is presented, which describes MIR in films with constrained overall extension by the additional degree of freedom of an orthorhombic structure compared to the tetragonal structure used in the standard model.
  • Item
    Magnetoelectricity induced by rippling of magnetic nanomembranes and wires
    (College Park, MD : APS, 2023) Ortix, Carmine; van den Brink, Jeroen
    Magnetoelectric crystals have the interesting property that they allow electric fields to induce magnetic polarizations, and vice versa, magnetic fields to generate ferroelectric polarizations. Having such a magnetoelectric coupling usually requires complex types of magnetic textures, e.g., of spiraling type. Here, we establish a previously unknown approach to generate linear magnetoelectric coupling in ferromagnetic insulators with intrinsic Dzyaloshinskii-Moriya interaction (DMI). We show that the effect of nanoscale curved geometries combined with the intrinsic DMI of the magnetic shell lead to a reorganization of the magnetic texture that spontaneously breaks inversion symmetry and thereby induces macroscopic magnetoelectric multipoles. Specifically, we prove that structural deformation in the form of controlled ripples activates a magnetoelectric monopole in the recently synthesized two-dimensional magnets. We also demonstrate that in zigzag-shaped ferromagnetic wires in planar architectures, a magnetic toroidal moment triggers direct linear magnetoelectric coupling.